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1 Aim 
 
The aim of this lesson is to illustrate how to use Stata to estimate multivariate continuous 
time survival time models. These include the parametric models (with hazard functions of the 
type discussed in Lesson 2) and the semi-parametric Cox model. 
 
 

2 Introduction 
 
Stata provides an extensive suite of estimators. Parametric regression survival-time models 
(including the piece-wise constant exponential model) are estimated by maximum likelihood 
using streg. Models corresponding to six types of parametric distribution can be estimated: 
Exponential, Weibull, Log-logistic, Gompertz, Lognormal, and Generalised Gamma. We will 
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focus on the first three (discussed in Lesson 2). Cox’s partial likelihood model (the ‘Cox 
model’) is estimated using stcox.  
 
To use these programs, you must stset the data first, as discussed in Lesson 3.  
 
I discuss and illustrate streg and stcox in turn, using the Cancer data set assumed to be stset 
already. At the end I ask you, as an exercise, to repeat parts of the analysis with alternative 
models or with different data sets.  
 
Note that typing streg by itself after estimating a model with streg, or typing stcox by itself 
after estimation with stcox, will result in the previous estimates being replayed on the screen. 
 
 

3 Estimation using streg (and plotting fitted curves with stcurv) 
 
The different parametric models estimated by streg share a common command syntax – the 
different distributions are chosen via option specifications. See help streg for the full 
command syntax and all the options available. We will ignore the frailty(.) option the 
moment. Frailty (unobserved heterogeneity) models are considered separately in Lesson 7. 
 
The basic syntax is  
 
streg [varlist], dist(distname) nohr time tr nolog 
 
dist(distname) specifies the survival model to be estimated. distname is one of the 
following: exponential, weibull, gompertz, lognormal, loglogistic or gamma. 
Abbreviations are allowed (to the minimum, as underlined). 
 
As Stata’s on-line help says (this is text modified from Stata version 7, which still applies): 
 
‘nohr’ specifies that coefficients rather than exponentiated coefficients are to be displayed 

or, said differently, coefficients rather than hazard ratios.  This option is valid 
only for models with a proportional hazard ratio parameterization: exponential, 
Weibull, and Gompertz. 

 
‘hr’, which can be specified when the model is estimated or when redisplaying results, states 

that the underlying log relative hazard coefficients are to be displayed.  This option 
affects only how results are displayed, not how they are estimated. 

 
‘time’ specifies that the model is to be estimated in the accelerated failure-time metric 

rather than the log relative-hazard metric.  This option is only valid for the 
exponential and Weibull models since they have both a hazard ratio and an accelerated 
failure-time parameterization.  For these two models, in the log relative-hazard 
metric, estimates of (B,s) are produced and in the accelerated failure-time metric, 
estimates of (-B*s,s) are produced. 
Regardless of metric, the likelihood function is the same and models are equally 
appropriate viewed in either metric; it is just a matter of changing interpretation. 
‘time’ must be specified when the model is estimated. 

 
‘tr’ is appropriate only for the log-logistic, lognormal, and gamma models, or for the 

exponential and Weibull models when estimated in the log expected time metric.  ‘tr’ 
specifies that exponentiated coefficients are to be displayed, which have the 
interpretation of time ratios.  ‘tr’ may be specified when the model is estimated or 
when results are redisplayed 

 
‘nolog’ prevents streg from showing the iteration log. 
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stcurve and predict are commands used after having run streg. See below. 
 
Recall that for models which can be written in the proportional hazards (PH) metric, the 
hazard function for person i can be written  
 

hi(t, Xi)  = h0(t).λi,   where λi ≡ exp(β′Xi), or 
 

log[hi(t Xi)] =  log[h0(t)]  + Xiβ 
 
where h0(t) is the baseline hazard, Xi is a vector of individual characteristics, and β is a vector 
regression coefficients and includes an intercept term. In a PH model, λi scales the baseline 
hazard multiplicatively by the same amount at each value of t.   
 
For PH models Stata reports estimates for covariate k of either βk (use the nohr option) or of 
the ‘hazard ratio’, exp(βk), for which you use the hr option. The PH form is referred to as the 
‘log relative hazard’ in Stata output. 
 
Models which can be written in the accelerated failure time (AFT) metric are of the form: 
 

ln(ti)  =  Xiβ*  +  zi  , or 
 

ln(tiψi)  =  zi  , or 
 

ti   =   ψiexp(zi) 
 

where ψi  ≡  exp(–β*′Xi) and zi = σui is a generalised error term (ui is an error term, and σ is a 
scale factor). 
 
The ψi  is a survival time scaling factor: values of ψi  > 1 accelerate failure (reduce survival 
time) whereas values of ψi  < 1 decelerate failure (increase survival time). 
 
For AFT models Stata reports estimates for covariate k of either βk

* (the default) or of 
exp(βk

*), for which you use the tr (time ratio) option. 
 
The Weibull and Exponential models are the only ones which are both PH and AFT. In this 
case, the relationship between the PH and AFT representations is 

β*  =  –σβ    
where σ = 1/α  and α is the Weibull parameter (see Lesson 2). Stata refers to α as ‘p’. 
 
The Gompertz model is PH only. The lognormal, log-logistic, and generalised Gamma 
models are AFT only. 
 
The illustrations in this Lesson focus on the Weibull and Log-logistic models, though the 
Exercises encourage you to explore other specifications. 
 

Lesson 5 3



The empirical illustration uses the Cancer data set, which has already been stset. Recall that 
there are two variables in the data set which are available to be used as covariates: age and 
drug. I shall recode the drug variable from three categories into a simpler binary variable 
summarising whether the subjects receive the drug or not.  
 
. recode drug 1=0 2/3=1 
(drug: 48 changes made) 
. lab var drug "receives drug?" 
. lab def drug 0 "placebo" 1 "drug" 
. lab val drug drug 

 

4 Estimation of the Weibull model 
 
The Weibull model estimates are: 
 
. streg drug age, dist(weibull) nolog nohr 
 
         failure _d:  died 
   analysis time _t:  studytim 
 
 
Weibull regression -- log relative-hazard form  
 
No. of subjects =           48                     Number of obs   =        48 
No. of failures =           31 
Time at risk    =          744 
                                                   LR chi2(2)      =     35.39 
Log likelihood  =   -42.931335                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
      _t |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    drug |  -2.196936   .4087791     -5.374   0.000      -2.998129   -1.395744 
     age |   .1202027   .0371599      3.235   0.001       .0473707    .1930348 
   _cons |  -10.58396   2.326271     -4.550   0.000      -15.14337   -6.024553 
---------+-------------------------------------------------------------------- 
   /ln_p |   .5204297   .1389037      3.747   0.000       .2481834     .792676 
------------------------------------------------------------------------------ 
       p |   1.682751   .2337403                          1.281695    2.209301 
     1/p |   .5942651   .0825456                           .452632    .7802168 
------------------------------------------------------------------------------ 
 
The nohr option meant that coefficient estimates were shown. We can show the 
corresponding hazard ratio estimates by simple replaying the command and adding the hr 
option (if we had wished, instead we could have used the nohr option and replayed using the 
hr option). Interpretation of the estimates follows the display of the estimates in hazard ratio 
form. 
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. streg, hr 
 
Weibull regression -- log relative-hazard form  
 
No. of subjects =           48                     Number of obs   =        48 
No. of failures =           31 
Time at risk    =          744 
                                                   LR chi2(2)      =     35.39 
Log likelihood  =   -42.931335                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
      _t | Haz. Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    drug |   .1111431    .045433     -5.374   0.000       .0498803    .2476487 
     age |   1.127725   .0419062      3.235   0.001       1.048511    1.212925 
---------+-------------------------------------------------------------------- 
   /ln_p |   .5204297   .1389037      3.747   0.000       .2481834     .792676 
------------------------------------------------------------------------------ 
       p |   1.682751   .2337403                          1.281695    2.209301 
     1/p |   .5942651   .0825456                           .452632    .7802168 
------------------------------------------------------------------------------ 
 
The estimates suggest that the hazard rate is increasing over time at a decreasing rate: note 
that 1 < p < 2 (see Lesson 2). In the Weibull model, the ratio of the hazard rate at survival 
time t to the hazard rate at survival time u, given the same X, is given by (t/u)α–1. Thus 
according to our model estimates, the ratio of the hazard rate at time 10 to that at time 5 is 
1.6, and the ratio of the hazard rate at time 30 to that at time 5 is 3.4: 
 
. di "h(10,X)/h(5,X) =  "  (10/5)^(e(aux_p)-1) 
h(10,X)/h(5,X) =  1.6051972 
 
. di "h(30,X)/h(5,X) =  "  (30/5)^(e(aux_p)-1) 
h(30,X)/h(5,X) =  3.3984681 

 
The coefficient estimates indicate that those receiving the drug have lower hazard rates 
ceteris paribus (i.e. lower conditional death rates and hence longer survival times). Note the 
negative (and statistically significant) coefficient for drug in the nohr representation and the 
hazard ratio for drug less that one in the hr representation: 0.11 = exp(–2.2). The estimates 
imply that, at each survival time, the hazard rate for those who received the drug is only 11% 
of the hazard rate for those who received the placebo. The output also shows that there is a 
positive association between age and the hazard rate: older people die earlier. In fact a one 
year rise in age is associated with a 13% higher hazard rate.  
 
The elasticity of the hazard rate with respect to a one unit change in the kth explanatory 
variable is given by βkXik; for age, it is therefore (0.1202027)*agei. (If the explanatory 
variable had instead been ln(age) rather than age, the estimated coefficient on ln(age) would 
be the elasticity of the hazard with respect to age.) Here are the elasticities: 
 
. * Elasticity of hazard w.r.t. age (age covariate in levels) = b_age * age 
. ge elas_age = _b[age]*age 
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. su elas_age, detail 
 
                          elas_age 
------------------------------------------------------------- 
      Percentiles      Smallest 
 1%     5.649528       5.649528 
 5%     5.769731       5.769731 
10%     5.889934       5.769731       Obs                  48 
25%     6.070238       5.889934       Sum of Wgt.          48 
 
50%     6.731353                      Mean           6.716327 
                        Largest       Std. Dev.      .6802519 
75%     7.212164       7.813178 
90%     7.813178       8.053583       Variance       .4627426 
95%     8.053583       8.053583       Skewness       .3161068 
99%     8.053583       8.053583       Kurtosis       2.125197 

 
Observe the way in which we can retrieve and refer to the estimated model coefficients: 
_b[something] refers to the estimated coefficient on the explanatory variable with name 
something in the last regression that was run. (One can also refer to many other estimates 
after running regressions, including estimated standard errors, log-likelihood values, and so 
on: see the User’s Guide.) 
 
More generally, hazard rate ratios at each survival time are related to absolute differences in 
characteristics: h(t,X1)/h(t,X2) = exp[β′(X1–X2)]. Thus a ten year difference in age, other 
things equal, is associated with a hazard rate ratio of some 3.3. Some one aged y+10 and who 
is receiving the drug has a hazard ratio that is 37% of some one aged y who gets the placebo:  
 
. di "h(t;age=y+10,drug=x)/h(t;age=y,drug=x) = "  exp(_b[age]*10) 
h(t;age=y+10,drug=x)/h(t;age=y,drug=x) = 3.3268546 
 
. di "h(t;age=y+10,drug=1)/h(t;age=y,drug=0) = "  exp(_b[age]*10 + _b[drug]) 
h(t;age=y+10,drug=1)/h(t;age=y,drug=0) = .36975709 

 
Let us now look at the estimated hazard and survivor functions graphically. We can do this 
using stcurv, run after streg. For example: 
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. stcurv, hazard title("Cancer data, at sample means") /// 
>         saving(streg2,replace) 
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Note the monotonically rising hazard.  The corresponding survival curve is as follows  
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. stcurv, survival title("Cancer data, at sample means") /* 
>         */ saving(streg1,replace) 
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The median survival time is about 17.  
 
Observe that stcurv can also be used for out-of-sample projections, i.e. showing what the 
estimated functions look like at survival times beyond the range that exists in the estimation 
sample. To do this use the range(# #) option to stcurve. Here’s what the previous hazard and 
survival curves look like if the analysis time axis is extended to 50. 
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stcurv, survival title("Survival, out-of-sample prediction, at sample means") /// 
 saving(streg1a,replace) range(0 50) 
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The last four graphs were, by default, drawn with the covariates set at their mean values. This 
does not make a lot of intuitive sense for categorical covariates. Compare instead the survivor 
curves for persons with drug = 0 and drug = 1 (and mean age), making use of the at(.) option. 
 
. . stcurv, survival title("Cancer data:drug=0") at(drug=0) /// 
>         saving(streg5,replace)   
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. stcurv, survival title("Cancer data:drug=1") at(drug=1) /// 
>         saving(streg6,replace) 
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Clearly survival times are much lower for placebo recipients. This can be seen even more 
clearly if we take advantage of the fact that stcurv allows us to use multiple at#(.) options in 
order to draw several lines on one graph:  
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stcurv, survival title("Survival, Cancer data: drug=0,1") at(drug=0) at1(drug=1) /// 
 saving(streg5a,replace) 
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Let us now calculate the median and mean survival times, using the formulae discussed in 
Lesson 2. To do this we have to specify the values of the covariate vector (X), and thence can 
derive λi. (In Chapter 2, we simulated values for a particular value of λ.)  
 
The code below shows first how to calculate the Weibull median and mean for the case when 
the covariates are set at the sample average values. Second it shows how to calculate the 
median and mean for each person in the sample – we can then examine the values for 
particular covariate combinations using list.  
 
In both cases, the derivations use the predict command after streg. The xb option with 
predict generates a new variable equal to the estimate β′Xi for each person i. The other 
calculations also use other automatically saved results, such as the mean after a summarize, 
r(mean), and the estimate of the Weibull shape parameter p as e(aux_p). I have also used a 
couple of local macros to hold scalar results to use in other calculations (see help macro). In 
fact, the calculation of mean and mean medians can be done directly using predict. 
 
[Note: after all ‘estimation class’ commands, examples of which are mostly regression 
commands (including streg, logit, cloglog), Stata saves a variety of results in objects with 
names e(something). You can find the full list of saved results by typing ereturn list after an 
estimation command. Examples include e(b) which is a vector containing the parameter 
estimates, and e(V) which is a matrix containing the variance-covariance matrix of the 
parameter estimates. Different commands save extra results relevant to their model; e.g. after 
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a Weibull regression, e(aux_p) contains the shape parameter α. Results are also saved after 
commands like summarize and tabulate in objects with names like r(something). You can 
find the full list of saved results by typing return list after one of these ‘rclass’ commands. 
E.g. after a summarize, r(mean) contains the estimate of the mean. For a more complete 
discussion of saved results, see the Manuals. Finally, observe that virtually all estimation 
commands may be followed with a predict command that generates predictions for the 
observations in memory, based on the parameter estimates of the most recent model. The 
sorts of things that one can predict depends, of course, on the command. See the Manual 
entries for the relevant command about predict for that command.] 
 
First is the code for predictions for the case when the covariates are set at the sample average 
values. The trick here is to note that our calculations require the value β′Xm where Xm is a 
vector containing the sample mean values of the characteristics. Instead of first calculating 
Xm and then β′Xm, we take advantage of the fact that β′Xm is equal to the mean of the 
individual β′Xi for each subject i in the sample. But I know that predict will produce the β′Xi 
so all we have to do is generate that and take its mean. Then we can feed the result into our 
calculation of the mean and median spell lengths. 
 
. predict xb, xb 
 
. su xb 
 
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
      xb |      48   -5.149179   1.303897  -7.131369  -2.530378   
 
. di "Pred. Median [at sample mean X] = "  (ln(2)*exp(-r(mean)))^(1/e(aux_p))  
Pred. Median [at sample mean X] = 17.15298 
 
. di "Pred. Mean [at sample mean X] = " exp(-r(mean)/e(aux_p))*exp(lngamma(1+1/ 
> e(aux_p))) 
Pred. Mean [at sample mean X] = 19.042575 

 
Now, second, we examine how to calculate the estimated mean and median survival time for 
every person in the sample. 
 
. * median duration for each person in sample 
. ge mediand = (ln(2)*exp(-xb))^(1/e(aux_p)) 
 
. * expected (mean) duration for each person in sample 
. ge meand = exp(-xb/e(aux_p))*exp(lngamma(1+1/e(aux_p))) 

 
In fact, Stata allows you to calculate these variables directly, using predict after streg, rather 
than calculating them by hand. Here’s how: 
 
. predict mediandS, median time 
. predict meandS, mean time 

 
Let’s confirm that we get the same results for both methods of derivation: 
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. su mediand mediandS meand meandS  
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
     mediand |        48    22.36656     15.3532   3.617957   55.70768 
    mediandS |        48    22.36656     15.3532   3.617957   55.70768 
       meand |        48    24.83049    17.04453   4.016515   61.84451 
      meandS |        48    24.83049    17.04453   4.016516   61.84451 

 
Now let’s look and see how the estimated means and median differ for individuals with 
different characteristics. Among those aged 50–60 years, we compare those who received the 
drug with those who received the placebo. 
 
. sort age drug 
 
. list id age drug mediand meand if age >50 & age <60 & drug ==0 , noobs 
 
  +---------------------------------------+ 
  | id   age   drug    mediand      meand | 
  |---------------------------------------| 
  | 17    51      0   11.34556    12.5954 | 
  |  4    52      0   10.56339   11.72706 | 
  | 11    52      0   10.56339   11.72706 | 
  | 20    52      0   10.56339   11.72706 | 
  | 14    55      0   8.525801   9.465014 | 
  |---------------------------------------| 
  |  9    56      0   7.938026    8.81249 | 
  |  5    56      0   7.938026    8.81249 | 
  | 19    57      0   7.390773    8.20495 | 
  |  8    58      0   6.881248   7.639295 | 
  | 10    58      0   6.881248   7.639295 | 
  |---------------------------------------| 
  |  3    59      0    6.40685   7.112638 | 
  +---------------------------------------+ 
 
. list id age drug mediand meand if age >50 & age <60 & drug ==1 , noobs 
 
  +---------------------------------------+ 
  | id   age   drug    mediand      meand | 
  |---------------------------------------| 
  | 34    52      1   38.97641    43.2701 | 
  | 48    52      1   38.97641    43.2701 | 
  | 36    54      1   33.78753   37.50961 | 
  | 41    55      1    31.4582   34.92368 | 
  | 35    55      1    31.4582   34.92368 | 
  |---------------------------------------| 
  | 31    55      1    31.4582   34.92368 | 
  | 24    56      1   29.28944   32.51601 | 
  | 44    56      1   29.28944   32.51601 | 
  | 42    57      1   27.27021   30.27434 | 
  | 23    58      1   25.39019   28.18721 | 
  |---------------------------------------| 
  | 32    58      1   25.39019   28.18721 | 
  | 39    58      1   25.39019   28.18721 | 
  +---------------------------------------+ 

 
Finally, let’s compare the estimated means and medians for two (hypothetical) persons, call 
them i and j, each of which has an age equal to the sample mean age, but one received the 
drug and the other didn’t. (These comparisons parallel those that we undertook in Lesson 2.) 
First we drop the previous variables, then we find the mean age using summarize and place 
its value into a local macro that we can refer to later. The next steps compute β′Xi and β′Xj 
for the two individuals i and j, and then finally we substitute these values into the formula for 
the mean and median for the Weibull model. 
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. drop xb mediand meand 
 
.  
. su age 
 
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
     age |      48      55.875   5.659205         47         67   
 
. local meana = r(mean) 

 
We now have the mean age. Now follows the calculations for the placebo recipient. 
 
. local xb0 = _b[_cons] + _b[age]*`meana' + _b[drug]*0 
  
. di "Mean age = " `meana' " ,_b[_cons] + _b[age]*(mean age) + _b[drug]*0 = " ` 
> xb0' 
Mean age = 55.875 ,_b[_cons] + _b[age]*(mean age) + _b[drug]*0 = -3.8676331 
 
. di "Pred. Median [mean(age), drug=0] = "  (ln(2)*exp(-`xb0'))^(1/e(aux_p)) 
Pred. Median [mean(age), drug=0] = 8.0092224 
 
. di "Pred. Mean [mean(age),drug=0] = " exp(-`xb0'/e(aux_p))*exp(lngamma(1+1/e( 
> aux_p))) 
Pred. Mean [mean(age),drug=0] = 8.8915291 

 
Here are the calculations for the drug recipient. 
 
. local xb0 = _b[_cons] + _b[age]*`meana' + _b[drug]*1 
 
. di "Mean age = " `meana' " ,_b[_cons] + _b[age]*(mean age) + _b[drug]*1 = " ` 
> xb0' 
Mean age = 55.875 ,_b[_cons] + _b[age]*(mean age) + _b[drug]*1 = -6.0645694 
 
. di "Pred. Median [mean(age), drug=1] = "  (ln(2)*exp(-`xb0'))^(1/e(aux_p)) 
Pred. Median [mean(age), drug=1] = 29.552145 
 
. di "Pred. Mean [mean(age),drug=1] = " exp(-`xb0'/e(aux_p))*exp(lngamma(1+1/e( 
> aux_p))) 
Pred. Mean [mean(age),drug=1] = 32.807649 
 

 
The results highlight again the very large difference in the survival time distribution between 
drug and placebo recipients. Observe too the difference between the mean and median 
durations. 
 
Exactly the same principles as described here could be used if you had a model with a large 
number of explanatory variables rather than simply two. 
 
The predict command after streg can be used to create other types of variables. E.g. 
residuals (Cox-Snell and martingale-like) for analysis of specification. See the Reference 
Manuals. 
 
AFT representation 
 
To complete the discussion of the Weibull model, consider now the AFT representation of 
the results, showing either coefficients or time-ratios. 
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. streg drug age, dist(weibull) nolog time 
 
         failure _d:  died 
   analysis time _t:  studytim 
 
 
Weibull regression -- accelerated failure-time form  
 
No. of subjects =           48                     Number of obs   =        48 
No. of failures =           31 
Time at risk    =          744 
                                                   LR chi2(2)      =     35.39 
Log likelihood  =   -42.931335                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
      _t |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    drug |   1.305563   .2369046      5.511   0.000       .8412383    1.769887 
     age |  -.0714323   .0217129     -3.290   0.001      -.1139888   -.0288758 
   _cons |   6.289679   1.220494      5.153   0.000       3.897554    8.681804 
---------+-------------------------------------------------------------------- 
   /ln_p |   .5204297   .1389037      3.747   0.000       .2481834     .792676 
------------------------------------------------------------------------------ 
       p |   1.682751   .2337403                          1.281695    2.209301 
     1/p |   .5942651   .0825456                           .452632    .7802168 
------------------------------------------------------------------------------ 
 
.  
. * Weibull model, AFT, exp(coefficients), via replay of earlier 
. streg, tr 
 
Weibull regression -- accelerated failure-time form  
 
No. of subjects =           48                     Number of obs   =        48 
No. of failures =           31 
Time at risk    =          744 
                                                   LR chi2(2)      =     35.39 
Log likelihood  =   -42.931335                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
      _t |  Tm. Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    drug |   3.689765    .874122      5.511   0.000       2.319237     5.87019 
     age |   .9310593    .020216     -3.290   0.001       .8922679    .9715372 
---------+-------------------------------------------------------------------- 
   /ln_p |   .5204297   .1389037      3.747   0.000       .2481834     .792676 
------------------------------------------------------------------------------ 
       p |   1.682751   .2337403                          1.281695    2.209301 
     1/p |   .5942651   .0825456                           .452632    .7802168 
------------------------------------------------------------------------------ 
 
Recall that the estimated coefficient on drug in PH version of the model was 2.20, and that –
(–2.20)(0.59)  = 1.31 which is indeed the estimated coefficient on drug in the AFT version of 
the model, as expected. Similarly, for age, –(0.12)(0.59) = –0.07, and for the constant term –
(–10.58)(0.59) = 6.29. The values of the AFT coefficients can be interpreted as saying that 
drug recipients have longer (log) survival times, and older people have shorter ones. 
 

5 Estimation of the Log-logistic model 
 
Estimation of this alternative model is quite straightforward, in the sense that little 
modification of the commands used earlier is required. The model is an AFT one (but not as a 
PH one). 
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. streg drug age, dist(logl) nolog 
 
         failure _d:  died 
   analysis time _t:  studytim 
 
 
Log-logistic regression -- accelerated failure-time form  
 
No. of subjects =           48                     Number of obs   =        48 
No. of failures =           31 
Time at risk    =          744 
                                                   LR chi2(2)      =     35.14 
Log likelihood  =    -43.21698                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
      _t |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    drug |   1.420237   .2502148      5.676   0.000       .9298251    1.910649 
     age |  -.0803289   .0221598     -3.625   0.000      -.1237614   -.0368964 
   _cons |   6.446711   1.231914      5.233   0.000       4.032204    8.861218 
------------------------------------------------------------------------------ 
 /ln_gam |  -.8456552   .1479337     -5.716   0.000        -1.1356   -.5557105 
------------------------------------------------------------------------------ 
   gamma |    .429276   .0635044                          .3212293    .5736646 
------------------------------------------------------------------------------ 
 
Qualitatively, the estimates are similar to those derived from the Weibull model. Those 
receiving the drug, and younger, have longer survival times. It turns out that the estimated 
median duration (at covariate means), 16, is a little smaller than that predicted by the Weibull 
model (17). Also the hazard function (evaluated at covariate means) is also rather different: 
note the negative slope at longer durations. 
 
What about the estimates of the median and mean duration. (The latter can be calculated 
because the estimate of gamma is less than one – see Lesson 2.) We proceed as we did with 
the Weibull model: First are the estimates for the (hypothetical) person with characteristics 
corresponding to sample mean values. 
 
. predict xb, xb 
 
. su xb 
 
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
      xb |      48    2.786804   .8510832   1.064673   4.091489   
 
. di "Pred. Median [at sample mean X] = "  exp(r(mean)) 
Pred. Median [at sample mean X] = 16.229071 
 
. di "Pred. Mean [at sample mean X] = "  exp(r(mean))*(_pi*e(gamma))/sin(_pi*e( 
> gamma)) 
Pred. Mean [at sample mean X] = 22.438269 

 
Here, second are calculations of the mean and median for each person in the sample. We are 
going to this ‘by hand’. Derivation of the values using predict is left as an exercise. 
 
. * median duration for each person in sample 
. ge mediand = exp(xb) 
. * mean duration for each person in sample 
. ge meand = exp(xb)*(_pi*e(gamma))/sin(_pi*e(gamma)) 
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Now we list the values to compare them across individuals with different characteristics. 
 
. sort age drug 
 
. list id age drug mediand meand if age >50 & age <60 & drug ==0 , noobs 
 
       id       age      drug    mediand      meand  
       17        51         0    10.4849   14.49639   
       11        52         0   9.675598   13.37746   
        4        52         0   9.675598   13.37746   
       20        52         0   9.675598   13.37746   
       14        55         0   7.603588    10.5127   
        5        56         0   7.016689   9.701255   
        9        56         0   7.016689   9.701255   
       19        57         0    6.47509   8.952441   
        8        58         0   5.975296   8.261427   
       10        58         0   5.975296   8.261427   
        3        59         0    5.51408   7.623751   
 
. list id age drug mediand mean if age >50 & age <60 & drug ==1, noobs 
 
       id       age      drug    mediand      meand  
       34        52         1    40.0386   55.35727   
       48        52         1    40.0386   55.35727   
       36        54         1   34.09621   47.14133   
       41        55         1   31.46442   43.50262   
       31        55         1   31.46442   43.50262   
       35        55         1   31.46442   43.50262   
       44        56         1   29.03576   40.14477   
       24        56         1   29.03576   40.14477   
       42        57         1   26.79458   37.04611   
       32        58         1   24.72638   34.18663   
       23        58         1   24.72638   34.18663   
       39        58         1   24.72638   34.18663   

 
Finally, let’s compare the estimated means and medians for two (hypothetical) persons, call 
them i and j, each of which has an age equal to the sample mean age, but one received the 
drug and the other didn’t. 
 
. drop xb mediand meand 
 
.  
. * mean age is already in local macro meana  
.  
. local xb0 = _b[_cons] + _b[age]*`meana' + _b[drug]*0 
 
. di "Mean age = " `meana' " ,_b[_cons] + _b[age]*(mean age) + _b[drug]*0 = " ` 
> xb0' 
Mean age = 55.875 ,_b[_cons] + _b[age]*(mean age) + _b[drug]*0 = 1.9583325 
 
. di "Pred. Median [mean(age), drug=0] = "  exp(`xb0') 
Pred. Median [mean(age), drug=0] = 7.0874991 
 
. di "Pred. Mean [mean(age), drug=0] = "  exp(`xb0')*(_pi*e(gamma))/sin(_pi*e(g 
> amma)) 
Pred. Mean [mean(age), drug=0] = 9.7991566 
 
. local xb0 = _b[_cons] + _b[age]*`meana' + _b[drug]*1 
 
. di "Mean age = " `meana' " ,_b[_cons] + _b[age]*(mean age) + _b[drug]*1 = " ` 
> xb0' 
Mean age = 55.875 ,_b[_cons] + _b[age]*(mean age) + _b[drug]*1 = 3.3785696 
 
. di "Pred. Median [mean(age), drug=1] = "  exp(`xb0') 
Pred. Median [mean(age), drug=1] = 29.328789 
 
. di "Pred. Mean [mean(age), drug=1] = "  exp(`xb0')*(_pi*e(gamma))/sin(_pi*e(g 
> amma)) 
Pred. Mean [mean(age), drug=1] = 40.549902 
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We can also look at the estimated survivor and hazard functions using stcurv: 
 
. * use stcurve to look at estimated survivor and hazard functions 
. *  for person with sample mean values of covariates 
 
. stcurv, survival title("Cancer data, at sample means") /// 
>         saving(streg7,replace)   
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. stcurv, hazard  title("Cancer data, at sample means") /// 
>         saving(streg8,replace) 
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The at(.) and range(.) options could of course also been used here (see the earlier 
discussion). 
 
 

6 Estimation of the Cox PH model using stcox 
 
All the models estimated so far used a parametric specification for the relationship between 
hazard rates and characteristics (PH models) or survival times and characteristics (AFT 
models). Forcing the hazard function to take a particular shape may be a disadvantage.  
 
Cox’s partial likelihood model allows derivation of estimates of the slope coefficients within 
the vector β from a PH model, but places no restrictions at all on the shape of the baseline 
hazard. Let us apply the Cox model using the same covariates as used when estimating the 
parametric models: The command in Stata is stcox and, as for estimation using streg models, 
the data must have first been stset. Assuming that has been done, here are the model 
estimates. First, we make stcox display the coefficient estimates (the slope coefficients within 
the vector β) using the nohr option; second, we display the hazard ratios exp(βk) for each 
regressor k. (Observe how typing the estimation command name again ‘replays’ the results.) 
Alternatively, we could have estimated the model with default display format (hazard ratios) 
and looked at the coefficients by redisplaying the results and using the nohr option.) 
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. stcox drug age, nohr 
 
         failure _d:  died 
   analysis time _t:  studytim 
 
Iteration 0:   log likelihood = -99.911448 
Iteration 1:   log likelihood = -83.551879 
Iteration 2:   log likelihood = -83.324009 
Iteration 3:   log likelihood = -83.323546 
Refining estimates: 
Iteration 0:   log likelihood = -83.323546 
 
Cox regression -- Breslow method for ties 
 
No. of subjects =           48                     Number of obs   =        48 
No. of failures =           31 
Time at risk    =          744 
                                                   LR chi2(2)      =     33.18 
Log likelihood  =   -83.323546                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
      _t | 
      _d |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    drug |  -2.254965   .4548338     -4.958   0.000      -3.146423   -1.363507 
     age |   .1136186   .0372848      3.047   0.002       .0405416    .1866955 
------------------------------------------------------------------------------ 

 
Now replay the results: 
 
. stcox, hr 
 
Cox regression -- Breslow method for ties 
 
No. of subjects =           48                     Number of obs   =        48 
No. of failures =           31 
Time at risk    =          744 
                                                   LR chi2(2)      =     33.18 
Log likelihood  =   -83.323546                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
      _t | 
      _d | Haz. Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    drug |   .1048772   .0477017     -4.958   0.000       .0430057    .2557622 
     age |   1.120325   .0417711      3.047   0.002       1.041375     1.20526 
------------------------------------------------------------------------------ 
 
The coefficient (and hazard ratio) estimates are similar to the Weibull ones derived earlier.   
 
If one wants to create the non-parametric estimates of the baseline survivor and cumulative 
hazard functions, one simply uses the basesurvival and basechazard options as follows 
(note how they can be abbreviated), and then one can graph (or list) the estimates: 
 
The Cox model does not fit a baseline hazard function – that is not identified. However, all 
proportional hazards models, including the Cox model, satisfy the properties that S(t,X) = 
[S0(t,X)]λ and H(t,X) = λ.H0(t,X). The baseline survivor and integrated hazard functions are 
derived using the methods described in Lesson 4, and then these are scaled using functions of 
the slope coefficients estimated for the Cox model (part of λ). 
 
. stcox drug age, nohr bases(s0) basech(ch0) 
 
<output omitted> 
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. twoway line s0 _t, sort connect(J) title("Baseline S(t),age=0,Cox model") /// 
>         saving(stcox1, replace)  
(file stcox1.gph saved) 
 
. twoway line ch0 _t, sort connect(J) title("Baseline Cum.Haz.,age=0,Cox model") /// 
>         saving(stcox2, replace)  
(file stcox2.gph saved) 

 
These graphs may not be very appealing in this form. The problem is that the baseline curves 
are generated setting all the covariates equal to zero. But values of the variable age range 
from 47 to 67 years in our data set. It is more sensible to calculate baseline curves using 
values lying within the covariate range. (Remember that the general shape of the hazard 
function will be the same – this is a PH model.). So let us redo the estimates for age = 55 (and 
drug = sample mean): To do this, we first calculate a new age variable equal to age minus 55; 
this ‘recentres’ the estimates. Then we re-estimate the model using the new regressor. 
 
. ge age55 = age-55 
 
. stcox drug age55, nohr bases(s1) basech(ch1) 
 
 
         failure _d:  died 
   analysis time _t:  studytim 
 
Iteration 0:   log likelihood = -99.911448 
Iteration 1:   log likelihood = -83.551879 
Iteration 2:   log likelihood = -83.324009 
Iteration 3:   log likelihood = -83.323546 
Refining estimates: 
Iteration 0:   log likelihood = -83.323546 
 
Cox regression -- Breslow method for ties 
 
No. of subjects =           48                     Number of obs   =        48 
No. of failures =           31 
Time at risk    =          744 
                                                   LR chi2(2)      =     33.18 
Log likelihood  =   -83.323546                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
      _t | 
      _d |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    drug |  -2.254965   .4548338     -4.958   0.000      -3.146423   -1.363507 
   age55 |   .1136186   .0372848      3.047   0.002       .0405416    .1866955 
------------------------------------------------------------------------------ 

 
. twoway line s1 _t, sort connect(J) title("Baseline S(t),age=55,Cox model") /// 
>         saving(stcox3, replace)  
(file stcox3.gph saved) 
 
. twoway line ch1 _t, sort connect(J) title("Baseline Cum.Haz.,age=55,Cox model") /// 
>         saving(stcox4, replace)  
(file stcox4.gph saved) 
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The model estimates are just the same. But compare the baseline curves for the uncentred and 
centred results. I use the graph combine command to put all the graphs into one picture. 
 
. graph combine stcox1.gph stcox2.gph stcox3.gph stcox4.gph, saving(stcox5, replace) 
(file stcox5.gph saved) 
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The median duration from the revised model now corresponds with those derived earlier. 
 
stcox has several other facilities. E.g. there are several alternative methods for dealing with 
tied survival time. (Recall that the theoretical model was derived assuming one event per 
survival time. The default option uses the ubiquitous Breslow method for handling ties – this 
was reported in the estimation output. Other methods are also available: help stcox.) It is 
possible to partition (‘stratify’) the sample into subgroups and estimate a model which allows 
a separate non-parametric baseline hazard for each subgroup. There are also possibilities for 
residual analysis. See help stcox. 
 
 

7 Estimation of the piece-wise constant exponential model using streg  
 
The parametric models that we have considered make strong assumptions about the shape of 
the hazard function, and the Cox model makes none. Sometimes an in between approach is 
more appealing, in which we fit a semi-parametric hazard. The piece-wise constant 
exponential model is the model most commonly used for doing this (in a continuous time 
modelling framework). The hazard is assumed constant within pre-specified survival time 
intervals but the constants may differ for different intervals.   
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The model is simple to estimate using streg, dist(exponential) but first requires some 
reorganisation of the data and creation of some time-varying covariates.   
 
Recall that the exponential model is  

hi(t)  = h0.λi,   where λi ≡ exp(β′Xi), or 
log[hi(t)] =  log(h0)  + β′Xi 

since, in this case h0(t) = h0, a constant.   
 
We can generalise this specification to have a constant hazard within each of K intervals 
along the survival time axis: 

log[hi(t)] =  log(h01)  + β′Xi,   t ∈ (0, τ1] 
log[hi(t)] =  log(h02)  + β′Xi,   t ∈ (τ1, τ2] 

... 
log[hi(t)] =  log(h0K)  + β′Xi,   t ∈ (τK-1, τK] 

 
All we need to estimate the model is to generate variables which allow the constant term in 
the hazard regression to differ from interval to interval. This we do by changing the 
organisation of the data set (expanding it or stsplitting it) and specifying the variables using 
appropriate dummy variables. Reread the relevant section in Lesson 3. 
 
Suppose the estimates above lead us to wish to allow the baseline hazard to differ over three 
intervals (0,8], (8, 17] and (17, 39]. In Lesson 3 we showed how to split episodes and create 
dummy variables that linked the (new) episodes with these time intervals – we called these 
variables, e1, e2, and e3, respectively. We then have two possible strategies in estimation: 
either we include all three variables (e1, e2, and e3) as regressors in the model and exclude 
the constant term, or we can include a constant term but only two of the variables. (We can’t 
include all three variables plus a constant because that would introduce a collinearity between 
the regressors, and the model could not be estimated.) I prefer the second display because it 
allows us to look directly at how the baseline hazard for the two intervals in question differs 
from that of the interval corresponding to the excluded variable. (This is a presentational or 
interpretational issue – the models are the same models and would generate the same 
predictions.) 
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Here, first, are the estimates for the case where all three variables are included, there is no 
constant term, and we want coefficients displayed rather than hazard ratios. 
 
. streg drug age e1 e2 e3, dist(exp) nolog nocons nohr 
 
         failure _d:  died 
   analysis time _t:  studytim 
                 id:  id 
 
Exponential regression -- log relative-hazard form  
 
No. of subjects =           48                     Number of obs   =        98 
No. of failures =           31 
Time at risk    =          744 
                                                   Wald chi2(5)    =    252.59 
Log likelihood  =   -46.134703                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        drug |  -2.010659   .4069367    -4.94   0.000     -2.80824   -1.213077 
         age |   .1031196   .0357331     2.89   0.004      .033084    .1731553 
          e1 |  -8.178818   2.071186    -3.95   0.000    -12.23827   -4.119368 
          e2 |  -7.720299   2.006316    -3.85   0.000    -11.65261   -3.787991 
          e3 |  -7.098881   2.000018    -3.55   0.000    -11.01884   -3.178916 
------------------------------------------------------------------------------ 

 
Now, second, see what happens if, instead, you estimate the model including the last two 
variables and a constant term:  
 
. streg drug age e2 e3, dist(exp) nolog nohr 
 
         failure _d:  died 
   analysis time _t:  studytim 
                 id:  id 
 
Exponential regression -- log relative-hazard form  
 
No. of subjects =           48                     Number of obs   =        98 
No. of failures =           31 
Time at risk    =          744 
                                                   LR chi2(4)      =     30.42 
Log likelihood  =   -46.134703                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        drug |  -2.010659   .4069367    -4.94   0.000     -2.80824   -1.213077 
         age |   .1031196   .0357331     2.89   0.004      .033084    .1731553 
          e2 |   .4585195   .4406342     1.04   0.298    -.4051077    1.322147 
          e3 |   1.079937   .4924212     2.19   0.028     .1148094    2.045065 
       _cons |  -8.178818   2.071186    -3.95   0.000    -12.23827   -4.119368 
------------------------------------------------------------------------------ 
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Finally here is that same model again, but now with hazard ratios displayed. 
 
. streg drug age e2 e3, dist(exp) nolog 
 
         failure _d:  died 
   analysis time _t:  studytim 
                 id:  id 
 
Exponential regression -- log relative-hazard form  
 
No. of subjects =           48                     Number of obs   =        98 
No. of failures =           31 
Time at risk    =          744 
                                                   LR chi2(4)      =     30.42 
Log likelihood  =   -46.134703                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        drug |   .1339005    .054489    -4.94   0.000     .0603111     .297281 
         age |   1.108624   .0396146     2.89   0.004     1.033637    1.189051 
          e2 |    1.58173   .6969645     1.04   0.298      .666905    3.751466 
          e3 |   2.944495   1.449932     2.19   0.028      1.12166    7.729663 
------------------------------------------------------------------------------ 

 
The hazard for the third interval (17, 39] is 2.94 times higher than the hazard for the first 
interval (the reference category). That it is higher is what we would expect from the non-
parametric estimates. The hazard ratios for drug and age are similar to those estimated by the 
other PH models. 
 
 

8 Exercise 5.1 
 
(i)  Repeat all the derivations above, but using the marriage data set (duration.dta) with the 

sex and married variables as covariates (you need to create a dummy variable from 
married first). Compare the estimates from the Weibull, Log-logistic and Cox models. 
Consider the impact of the covariates, the shape of the hazard function, and the median 
partnership survival time for persons of different legal status (single, married) and sex 
(man, woman). 

(ii) For the Weibull model and the Cancer data, we computed the estimated mean and median 
for each individual both by hand and directly using Stata’s predict command. For the 
Log-logistic model, we only used the by-hand method. Repeat the derivation using 
predict, and show that it yields the same results. 

(iii) Return to the Cancer data set and estimate the lognormal model using the same 
covariates as before (drug, age). Then run the following three commands: 

ge cens = 1-died 
ge lntime = ln(studytim) 
cnreg lntime drug age, censored(cens) 

Compare the results from the cnreg and streg, d(lognormal) regressions. Can you explain 
the relationship between them? Now examine how badly OLS does. Rerun the regression 
first simply ignoring censoring (reg lntime drug age) and then excluding the censored cases 
(reg lntime drug age if died==1). How do the results compare with the earlier ones? 
(iv) Now estimate the generalised Gamma mode using the Cancer data and the same 

regressors. What do the hazard and survivor functions look like? Compare the median 
durations for persons with drug = 0 and drug = 1 (use stcurv).  
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(v)  [Harder] The generalized Gamma model has ancillary parameters kappa and sigma. For 
particular values of these parameters, the model reduces to models considered above (they 
are nested). If kappa = 1: Weibull model. If kappa = 1, sigma = 1: Exponential model. If 
kappa = 0: Lognormal model. Do a Wald test of the null hypothesis that kappa = 0, and a 
Wald test of the null hypothesis that kappa = 1. Compare the test statistics with χ2(1). 
Alternatively use a likelihood ratio test based on the log-likelihood values derived from 
estimation of the generalized Gamma model and a Weibull model. 
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