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Abstract 
This paper proposes a new method for describing a realistic tax-benefit system in a dynamic 

microsimulation model. The suggested approach draws upon existing third-party tax-benefit 

calculators and provides an alternative to integration of tax functions within a dynamic 

structure. It has the advantages of adapting to the degree of household sector detail described 

by a model and permits taxes and benefits to be imputed directly from commonly available 

micro-data sources. A practical application to a dynamic programming model designed to 

reflect the contemporary UK policy context indicates that the proposed method for projecting 

taxes and benefits implies a comparable computational burden and generates qualitatively 

comparable results to a detailed functional description of fiscal policy, while simplifying 

model development. 
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1 Introduction 
The scope and sophistication of models adopting a micro-approach for projecting household-

sector dynamics has grown substantially during the past six decades. A noteworthy feature 

of such models is that they tend to use highly stylised functional forms to approximate the 

complexity of modern tax and benefit systems. Although this type of abstraction helps to 

simplify model specification, it also limits scope for contributing to public policy debate and 

exposes model projections to distortions that may be difficult to anticipate. This study 

demonstrates a new method that simplifies the task of projecting realistic tax and benefit 

payments in a dynamic heterogenous household model.  

The modelling approach described in this study delegates the task of reflecting tax and 

benefit policy to widely available third-party data sources. This task can represent a very 

significant developmental hurdle in context of complex tax and benefit regulations, 

particularly in dynamic contexts where such regulations are also subject to frequent change. 

The suggested approach allows the modeller to leverage the expertise of policy specialists to 

obtain a detailed approximation of a tax and benefit system, which may be readily modified 

and shared between diverse model structures.  

While our imputation method can be used in conjunction with any degree of household 

heterogeneity that is simulated, the precision of imputed taxes and benefits increases with 

simulated household detail. It is our hope that simplifying the problem of modelling the 

incidence of a tax and benefit system will facilitate increasingly detailed descriptions for 

households, improving the realism of simulated projections. Such a transition may prompt 

parallel advances in economic modelling, from macro agent-based models to life-cycle 

models, dynamic microsimulations, and dynamic programming models. 

The suggested approach is demonstrated via practical application to a structural dynamic 

microsimulation model designed to reflect the UK policy context. Results are reported that 

show the method is capable of imposing a comparable computational burden, and generating 

similar simulated projections, to a detailed functional description of contemporary UK tax 

and benefits policy. 

1.1 Scope for application 

Economic studies based on dynamic projections of heterogeneity in the household sector often 

abstract from demographic detail. For instance, macroeconomic agent-based models (Axtell 

and Farmer, 2022) typically explore household-sector interactions with firms and banks via 

labour, capital, and product markets.  In this context, agents in the household sector are 

typically distinguished by their skills/earnings potential, capital/savings, and the firms with 

which they interact; demographic characteristics are ignored.1 With household demographics 

 
1 See, for example, Assenza et al. (2018), Ashraf et al. (2016), Neveu (2013), Dawid et al. (2019), 

Teglio et al. (2019), Dosi et al. (2015), Botta et al. (2021), and Caiani et al. (2019). Demographic 
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ignored, these studies often focus on after-tax incomes, or adopt highly stylised 

representations of existing tax and benefits policy.2 

Household demographic detail is usually omitted from dynamic models with 

heterogenous agents to mitigate computational complexity and focus on the principal subjects 

of interest. Yet omitting this detail comes at a cost. Household characteristics that have been 

identified by the literature as helping to explain empirical regularities of labour/leisure and 

consumption/savings decisions (in addition to education, skills and wealth) include age, 

relationship status, dependent children and health. 3  Omitting such demographic 

characteristics can consequently detract from the practical relevance of results, particularly in 

context of seminal trends in cohabitation, fertility, and healthy life-expectancy. 

Given the potential for demographics to influence key margins of economic decision-

making, demographic characteristics are likely to feature more prominently in prospective 

dynamic micro-analytic studies of the household. This trend was anticipated by Huggett 

(1996), who outlines a research programme (attributed to Atkinson, 1971), in which a ‘basic’ 

life-cycle framework is augmented to account for “(1) earnings, health and longevity 

uncertainty, (2) household structure, (3) institutional features such as social security, income 

taxation, and social insurance, and (4) market features such as borrowing constraints and the 

absence of some insurance markets” (p. 470). The order of the research programme outlined 

by Huggett (1996) is important, with “household structure” added before “institutional 

features”, thereby suppling the demographic detail upon which tax and benefit payments 

commonly depend.4  

 
characteristics (other than age) are also often abstracted in the literature that accounts for 

precautionary savings incentives in life-cycle frameworks; İmrohoroǧlu et al. (1995), Hubbard et al. 

(1995), Huggett (1996), Gourinchas and Parker (2002), Low (2005), Aydilek (2013), and Conesa et al. 

(2020). 
2 Where a government sector is included for analysis, most macro-economic agent-based models 

adopt simple linear functions for net fiscal transfers with households; see Assenza et al. (2018), Ashraf 

et al. (2016), Teglio et al. (2019), Dossi et al. (2015), Caiani et al. (2020). In contrast, Neveu (2013) and 

Botta et al. (2021) allow for income tax progressivity.  Similarly, for microsimulation models that 

account for precautionary incentives and adopt linear transfer functions, see Albertini et al. (2021), 

Low and Pistaferri (2015), Huggett (1996), İmrohoroǧlu et al. (1995), and French (2005); in contrast, 

Kean and Wasi (2016), Conesa et al. (2020), De Nardi et al. (2017) allow for progressive income taxes. 

These models can be contrasted with those designed expressly to explore tax and benefits policy: see 

Orcutt et al. (1976), Caldwell (1997), Morrison (1998), Flood (2007), Nelissen (1991,1993), Spielauer 

(2013), and Dekkers and Van den Bosch (2016) for a review. 
3 See Attanasio and Webber (2010) and Browning and Lusardi (1996) for discussion of stylised 

facts underlying the life-cycle framework, including the role of household demographics. See also 

Attanasio and Webber (1995), Fernandez-Villaverde and Krueger (2007), and Gustman and 

Steinmeier (2005) for the importance of household demographics in explaining consumption patterns. 
4 An example is the contemporary literature that accounts for life-cycle precautionary savings 

incentives. French (2005), Low and Pistaferri (2015), Keane and Wasi (2016), De Nardi et al. (2018) and 

Albertini et al. (2021) accommodate health status, Attanasio et al. (2018) reflect education, age, and 

family composition, and van de Ven (2017a) accounts for uncertainty over a relatively wide range of 

demographics, including relationship status and number and age of dependent children. 
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The method for projecting tax and benefits payments outlined in this study is designed to 

facilitate point (3) of the research programme set out by Huggett (1996). The objective is to 

simplify the task of reflecting realistic tax and benefit systems in a way that can be adapted to 

increasing micro-detail reflected by a simulation model (points 1 and 2 of Huggett). Taken 

together, these features can then be used to improve our understanding of “market features” 

referred to in point (4) by Huggett, extending ultimately to the workings of the macro-

economy. How do caring responsibilities feed into economic insecurity? What are the 

implications of alternative funding models for tertiary education on inequality of lifetime 

incomes? What bearing has the evolution of tax and transfer policy on employment 

incentives? Realistic descriptions of tax and benefit policy lie at the heart of many questions 

such as the above, that are of both academic interest and of vital public importance. 

1.2 Integration with third-party tax-benefit calculators 

The method for projecting tax and benefit payments proposed in this paper was devised to 

permit a dynamic heterogenous household-sector model to draw upon existing third-party 

tax-benefit calculators (sometimes referred to as static, non-behavioural microsimulation 

models), but it applies more generally to any micro-data source (including household 

surveys) that contain information on both gross and net incomes  Well-maintained tax-benefit 

calculators are now publicly available for many countries5, and their development involves 

an appreciably different skill-set to the development of dynamic micro-analytic models more 

generally. Although the concept of combining complementary model functionality is far from 

new (Richiardi, 2017), we are aware of just a handful of examples where a static tax-benefit 

calculator has been integrated with a dynamic microsimulation context (O’Donoghue, 2001, 

Blundell et al., 2016, 2021; Spielauer et al. 2020; Liégeois and Dekkers, 2014; Liégeois, 2021). 

At least two considerations may help to explain this lack of integration.  

First, relying on third-party inputs for key model components implies a loss of control. For 

instance, a static microsimulation model for taxes and benefits may not be equipped to reflect 

intertemporal policy variation or explore potential subjects of interest in a dynamic model. 

Likewise, concerns may arise regarding the on-going maintenance of the candidate static 

simulation model that exaggerate risks associated with long-term research investments in 

dynamic model structures. 

Secondly, integrating a dynamic model with an existing static model of taxes and benefits 

introduces practical difficulties concerning communications between possibly diverse model 

frameworks. These problems may appear technically insurmountable, especially where 

simulation times are a pressing concern (as in the dynamic programming literature – see Rust, 

2008). 

 
5 For example, static tax-benefit calculators for the UK policy context include UKMOD (Richiardi 

et al., 2021), the Intra-Governmental Tax and Benefit Model administered by HM Treasury (IGOTM), 

Policy Simulation Model (PSM, Department for Work and Pensions), and TAXBEN (Giles and 

McCrae, 1995). 



 

 5 | P a g e  

In a series of papers, Blundell and co-authors integrate dynamic programming models of 

household decision making with a stand-alone tax benefit calculator (Blundell et al., 2016, 

2021). The tax benefit calculator (Fortax – see Shaw, 2011) provides a functional description of 

the UK tax and benefit system. The authors directly “embed” this calculator within their 

structural models to explore the incentive effects of changes to tax and benefits policy.  

Embedding one model structure within another, as described by Blundell et al., is arguably 

the most obvious way of integrating functionality from alternative model frameworks. 

However, the feasibility of such an approach depends upon model architecture(s) and 

programming language(s).  

Liégeois (2021) introduces an interesting alternative perspective to this approach by 

exploring the feasibility of augmenting a tax-benefit calculator (EUROMOD, see Sutherland 

and Figari, 2013) with dynamic model functionality based on the LIAM2 framework (de 

Menten et al. ,2014). In the case of Liégeois (2021), interactions between the two considered 

model structures are facilitated by architectural similarities shared by EUROMOD and 

LIAM2. Unfortunately, complementarities of this sort can be difficult to identify ex ante, and 

difficult to maintain ex post. Furthermore, even where two models share similar programming 

architecture, they may differ along other dimensions – including periodicity of projected 

income flows and projected characteristics – which complicate associated integrations 

between them (see Liégeois for further discussion). 

Spielauer et al. (2020) describe an approach for combining functionality from disparate 

models that avoids the complications discussed above. Specifically, Spielauer et al. document 

a continuous time dynamic microsimulation model that projects a range of individual-specific 

(non-financial) characteristics, including age, education, relationship status, fertility, and 

health. Spielauer et al. note that the dynamic population projections generated by their model 

can be used to define weights for imputing associated financial statistics from the tax benefit 

calculator EUROMOD via static aging methods. 

Our approach shares with Spielauer et al. (2020) the objective of integrating third-party 

inputs for projecting tax and benefit payments within a dynamic framework. In common with 

Spielauer et al. (2020), the approach that we propose requires no direct (i.e. run-time) 

communication between alternative model structures. Furthermore, in common with 

Spielauer et al., the approach that we propose uses one model structure to generate a database 

that is read as input by another model structure.  

However, while Spielauer et al. (2020) use a dynamic model to “age” the microdata 

generated by a static tax-benefit calculator (by adjusting sample weights), we envisage using 

the output of a tax-benefit calculator to impute transfer payments for each agent at each point 

in time projected by a dynamic model. More specifically, we propose using a third-party 

source to obtain a reference database that describes “family specific” characteristics, including 

private (pre-tax and benefit) and disposable (post-tax and benefit) income. This database is 

loaded into the dynamic heterogeneous household sector model and used in a similar fashion 
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to a look-up table for evaluating transfer payments whenever needed, given assumptions 

about future policy developments.6  

The approach that we suggest has a number of practical benefits. Relative to the approach 

of Spielauer et al., our approach facilitates the production of panel data rather than temporally 

dynamic cross-sectional snap-shots. As discussed above, the approach allows the model 

developer to delegate the task of capturing fiscal policy to dedicated specialists. Furthermore, 

the micro-data that we suggest be loaded as input into a dynamic model takes a standard 

form, facilitating reference to alternative static microsimulation models, in addition to 

commonly available survey microdata with the relevant income information.7 The approach 

can also be adapted to reflect temporal transitions, including growth of tax and benefit rates 

and thresholds, which may be important in dynamic contexts: most simply, changes in the 

tax-benefit rules over time can be accommodated by loading multiple year-specific look-up 

tables. 

The remainder of the paper is organised as follows. Section 2 describes and justifies 

principal features of the proposed modelling approach. A practical implementation of the 

proposed approach is described in Section 3, and an empirical evaluation of the practical 

implementation is reported in Section 4. Section 5 concludes. Source code that implements the 

proposed approach is provided in the Appendix, as are details of how to replicate the reported 

analysis. 

2 Proposed Methodology 
The need to impute tax and benefit payments in a simulation model is comparable to a missing 

variable problem. “Hot deck” imputation is a common approach used to replace “missing 

values of one or more variables for a non-respondent (called the recipient) with observed 

values from a respondent (the donor) that is similar to the non-respondent with respect to 

characteristics observed by both cases” (Andridge and Little, 2010, pp. 40-41). Part of the 

appeal of hot deck imputation is that it delivers imputed values that are guaranteed to be 

feasible (with respect to the survey population) and mitigates some of the risks of 

misspecification associated with regression-based methods. 8  It also facilitates ex post 

validation via comparison of the characteristics of donors and their recipients. 

 
6 Schofield et al. (2022) also follow a similar approach by matching simulated individuals in their 

dynamic microsimulation model of mitochondrial disease in adults with simulated individuals in 

STINMOD+, a tax-benefit model for Australia, based on a limited set of observable characteristics 

(age, sex, highest education attained and state of residence). Their objective, however, is to use the 

microsimulation model as a baseline to evaluate the economic impact of the disease, rather than 

informing the evolution of the dynamic structure itself. 
7 Nevertheless, use of a tax-benefit calculator does facilitate consideration of policy reform 

scenarios. 
8 Hot deck imputation does, however, depend upon important assumptions concerning the 

matching methods used to identify “donors” for “recipients”. 
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2.1 Theoretical framework 

Consider the functioning of a real-world tax-benefit system as a collection of mappings from 

the characteristics of the fiscal unit, 𝑋𝑖, to some (positive or negative) transfer, 𝑝𝑖: 

𝑝𝑖 = 𝑓(𝑋𝑖) (1) 

where i is the fiscal unit (time subscripts are omitted to simplify notation). Modelling tax-

benefit payments typically involves proxying eq. (1) by: 

�̃�𝑖 = 𝑓(𝑍𝑖) (2) 

where 𝑍 represents the model proxy for characteristics 𝑋 and 𝑓(. ) is a simulation proxy for 

the real-world application of fiscal rules 𝑓(. ). 

Projecting tax-benefit payments in a dynamic simulation model, 𝐷, involves coding eq. (2), 

where the arguments of the function are limited to those included in the model: �̃�𝐷,𝑖 =

𝑓𝐷(𝑍𝐷,𝑖). Similarly, a (static) tax-benefit calculator involves coding: �̃�𝑆,𝑖 = 𝑓𝑆(𝑍𝑆,𝑖).  

Static tax-benefit calculators typically enjoy two key advantages, relative to dynamic 

simulation models, in reflecting real-world transfer policy. First, the set of characteristics used 

to impute transfer payments can generally be more flexibly chosen to reflect features of 

transfer policy, so that 𝑍𝐷 ∈ 𝑍𝑆 ∈ 𝑍 . 9  This point must be qualified, however, as dynamic 

models may generate characteristics, like contributions histories, that have an important 

bearing on transfer payments but are poorly described by cross-sectional micro-data. 10 

Secondly, greater effort can be expended in a static tax-benefit setting in specifying assumed 

functions to capture real-world policy detail, such that |𝑓𝑆(. ) − 𝑓(. )| ≤ |𝑓𝐷(. ) − 𝑓(. )|. 

Our approach envisages using a tax-benefit calculator to compute �̃�𝑆,𝑖  for a reference 

dataset, and then assign tax-benefit payments in a dynamic model by using matching methods 

to draw on the reference dataset based on the common variables 𝑍𝐶 ∈ (𝑍𝐷 ∩ 𝑍𝑆). It should be 

clear from the above discussion that the ability of the suggested approach to capture realistic 

transfer payments will depend upon: 

i) The comprehensiveness of the set of input variables considered by the static tax-

benefit calculator, 𝑍𝑆; 

ii) The set of common variables used for imputation, 𝑍𝐶 = 𝑍𝑆 ∩ 𝑍𝐷; 

iii) The realism of the static functional description, 𝑓𝑆(. );  

iv) The matching methods considered for imputation.  

Concerning points (i) and (ii), where 𝑍𝐷 ∈ 𝑍𝑆 (as discussed above), then 𝑍𝐶 ≡ 𝑍𝐷 so that the 

approach we envisage suffers no loss of detail in reflecting the incidence of transfer payments. 

In this case, the envisaged approach will benefit to the extent that the tax-benefit calculator 

implements a more realistic function than would otherwise be implemented in the dynamic 

model; |𝑓𝑆(. ) − 𝑓(. )| ≤ |𝑓𝐷(. ) − 𝑓(. )| addressing point (iii). The final point (iv) concerns the 

 
9 Note that 𝑍𝐷 refers exclusively to variables endogenous to the dynamic model that are of use in 

projecting tax and benefit payments.  
10 One way to mitigate this type of issue is to adopt a hybrid approach for imputing transfer 

payments, where a database is used to impute “non-contributory” benefits, and functions are used to 

project the contributory component of a transfer system.  
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realism associated with methods for imputing missing data. Each of the steps of the suggested 

method are discussed in turn below. 

2.2 Specification of the reference database 

A common starting point for static taxes-benefit models is a publicly available microdata set. 

This dataset describes the set of input variables denoted 𝑍𝑆  in the preceding subsection. The 

input data include all of the information used by a static tax-benefit model to distinguish 

transfer payments between individual agents. “Agents” in this context typically refers to 

people, where the dataset also includes links defining a range of demographic relationships 

between them. These relationships commonly permit identification of nuclear families 

(benefit units) – between dependent children and their parents and between cohabiting 

spouses – and may also indicate where multiple nuclear families share the same 

accommodation (households). 

In the UK, for example, both the Intra-Governmental Tax and Benefit Model (IGOTM, HM 

Treasury) and TAXBEN (Institute for Fiscal Studies) load in microdata for variables derived 

from the Living Costs and Food Survey, whereas the Policy Simulation Model (PSM, 

Department for Work and Pensions) and UKMOD (based on the EUROMOD framework) load 

in data from the Family Resources Survey.  Static tax-benefit models typically generate a range 

of tax and benefit statistics for each agent represented in the starting microdata set, 𝐼, and 

report results in the form of an augmented data set, (𝑍𝑆,𝑖 , �̃�𝑖)∀𝑖 ∈ 𝐼. 

The method we propose involves importing the augmented datasets generated by static 

microsimulation models – or equivalent survey data – for imputing tax and benefit payments 

in a dynamic model.11 The augmented datasets generated by static tax benefit microsimulation 

models tend to share common structural features, which facilitates switching between them. 

Furthermore, most static models of taxes and benefits include tools that permit analysis of 

user-defined case-studies (Hufkens et al., 2019), which may be used to tailor the starting 

database to key subjects of interest.   

2.3 Matching methods 

The econometric literature presents a range of alternative approaches that could be used to 

impute individual specific proxies for tax and benefit payments from a reference database.12 

The approach proposed here uses matching methods to identify (donor) individuals in the 

reference database that possess comparable characteristics to (recipient) simulated agents, in 

 
11 Using a static-tax benefit calculator to impute transfer payments rather than drawing directly 

from a suitable survey micro-dataset has the advantage of facilitating consideration of policy 

counterfactuals that are often a focus of interest for dynamic microsimulation models. 
12 These methods range from functional regression specifications, through non-parametric 

descriptions, to pair-wise matching methods. For studies that apply regression methods to impute net 

tax and benefit payments, see Bargain et al. (2013), Biewen & Juhasz (2012), and Frenette et al. (2007). 
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common with hot deck imputation and the KNN (K-Nearest Neighbours) machine learning 

algorithm.  

Best practice requires that the assumed matching method be tailored to the subject of 

interest (Stuart, 2010). Allocation of the treatment (evaluation of transfer payments by the 

static microsimulation model) is universal in the current context, which precludes use of 

propensity score matching.  

The matching method should ensure that there is a strict delineation with respect to forms 

of population heterogeneity that have a substantial bearing on tax and benefit payments (e.g., 

adult marriage/cohabitation status, health status, and retirement), suggesting the use of exact 

matching methods over selected dimensions. Nevertheless, the method should also guarantee 

that a match is obtained for all conceivable simulated circumstances, which motivates interest 

in coarsened exact matching (Iacus et al., 2009).  

Furthermore, the method should seek to limit differences in relation to a set of selected 

continuous variables. This last point recognises the need to approximate incomes, while 

acknowledging the impossibility of exact matches to all conceivable measures of income.  

Finally, factors that affect tax and benefit payments but are not included in a model – such 

as imperfect benefits take-up, tax avoidance and tax evasion (whether sampled or simulated) 

– can result in noisy observations reported by a reference database. The matching method 

should consequently limit exposure to “high influence” observations (outliers).  

In response to the above considerations, Spielauer et al. (2020) apply coarsened exact 

matching of discrete valued characteristics to adjust the weights of a database derived from a 

static tax-benefit model. This involves matching each observation in a dynamic simulation to 

an observation in the reference database that has the same set of discrete characteristics.  

An advantage of this approach is that it can be readily tailored to the level of detail described 

by a dynamic model, and adapted as the simulated detail is expanded.  

Furthermore, the approach permits considerable pre-processing to be conducted on the 

considered database, which helps to limit the computational overhead associated with the 

matching process. Specifically, it is possible to “pre-categorise” each observation in the 

reference database with respect to the feasible combinations of the discrete valued 

characteristics considered for matching. This implies that matching a dynamically generated 

individual involves identifying their respective subgroup, and then selecting an observation 

from the pre-categorised database observations of the respective group. 

Here we propose extending on Spielauer et al. (2020) in two ways. We require a matching 

process that is guaranteed to identify a match for all individuals projected in a dynamic 

simulation while at the same time not wanting to sacrifice the degree of detail used for the 

matching process. Our first innovation to Spielauer et al. is designed to achieve this balance 

by using stratified coarsened exact matching over discrete valued characteristics. That is, we 

suggest use of multiple “levels” of exact matching, starting at the most fine-grained (discrete) 

set of matching criteria, and then only proceeding to more coarse grained matching criteria if 

a match is not otherwise identified. 
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Our second innovation to Spielauer et al. (2020) recognises that continuous valued 

variables, like private income, are important for determining tax benefit payments in addition 

to discrete valued variables. Spielauer et al. do not account for continuous variables as their 

model did not project these. That is not the case in dynamic microsimulation models more 

generally, and we recommend nearest-neighbour matching where continuous variables that 

are relevant for determining tax and benefit payments are projected by a dynamic model.  

Where the set of continuous variables that could be included for matching extends beyond 

a single characteristic (e.g. formal childcare costs in addition to private income, and/or income 

splitting), then we envisage use of a method to reduce the dimensionality of the problem to a 

single distance. Here we suggest use of Mahalanobis distance matching (MDM – see Rabin, 

1980), although it may be noted that Euclidean distance is a more popular method considered 

elsewhere in the literature (e.g. the KNN algorithm). 

The computational overhead associated with matching continuous valued variables can 

also be economised in the pre-processing stage that is referred to above. Specifically, the tax 

database observations within pre-categorised subgroups can be stored in ascending order of 

the continuous variables included in the matching process. Further details concerning the 

practical implementation of the proposed matching procedure are provided for the example 

that is discussed in Section 3 (see Section 3.2.2).  

2.4 Imputing taxes and benefits 

The problem of imputing taxes and benefits for a dynamic model is complicated by the 

potential for temporal variation of the policy environment. In context of trend (real) wage 

growth, for example, holding the description of taxes and benefits fixed through time can 

result in widespread bracket creep (Bohanon, 1983), and declining relevance of welfare safety-

nets. This section begins by discussing issues relating to imputation of taxes and benefits at a 

point in time, before proceeding to discuss how the approach can be adapted to reflect 

alternative forms of temporal policy variation. The section finishes with discussion of how the 

method can be adapted to account for policy variation beyond the scope of a reference 

database. 

2.4.1 Imputations at a point in time 

Having matched the characteristics of a benefit unit in a dynamic model to those in a reference 

database, as discussed in Section 2.2, the objective is to impute taxes and benefits in a way that 

takes into consideration the potential for inexact matching of continuous variables, including 

private (pre-tax and benefit) incomes. Suppose, for example, that the set of continuous 

variables is limited to private income, and that a benefit unit in the dynamic model, denoted 

A, is projected to have private income worth £531 per week. Suppose also that the closest 

observation to this income described by the reference database (after coarse-exact matching), 

denoted B, was £535 per week. How should disposable income be imputed from the reference 

database to account for the £4 per week difference in private incomes? 
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One approach would be to match each benefit unit in the dynamic model to multiple units 

in the reference database and use interpolation methods for imputation. In the above example, 

the next closest observation described by the reference database, denoted C, might have 

private income of £525 per week (£6 per week less than our target individual). In this case, 

using linear interpolation would equate disposable income for unit A to 0.6 times disposable 

income of observation B plus 0.4 times disposable income of observation C.13  

We reject the interpolation approach described above in favour of an approach that 

permits each simulated unit to be matched to a single unit in the reference database. The 

motivation for this preference is that it facilitates post-simulation diagnosis and validation of 

imputed transfer payments.14 

Given the above, the problem is how to impute taxes and benefits for a simulated unit 

from the taxes and benefits reported by a reference database for a (single) matched unit in a 

way that adjusts for potential differences in private incomes. Where the private incomes of 

both matched observations (simulated and database) are non-zero, transfer payments can be 

imputed by assuming that the ratio of transfer payments to private incomes is the same for 

matched individuals. That is, if 𝑥𝑖 and �̃�𝑖 denote, respectively, the private income and transfer 

payment of individual 𝑖, then �̃�𝐷 =
�̃�𝑆

𝑥𝑆
𝑥𝐷, with 𝐷 denoting the unit simulated in the dynamic 

model and 𝑆 the respective matched unit from the reference database.  

As 𝑥 tends toward zero, the fact that �̃�/𝑥 tends toward infinity complicates use of the ratio 

suggested above for imputation. We consequently propose a two-step process for matching 

individuals by private income. In the first step, coarsened exact matching is used to group 

individuals by broad income bands; e.g. low, middle, and high private incomes. In the second 

step, weighted nearest-neighbour matching is employed. For individuals in the lowest private 

income grouping, transfer payments of simulated individuals are set equal to those of the 

matched individuals identified from the reference database, appropriately uprated to 

consider time differences between the static and dynamic models; that is �̃�𝐷 = �̃�𝑆. Otherwise, 

the ratio method described in the preceding paragraph is used. 

2.4.2 Accommodating policy variation through time 

If the policy environment is assumed constant, the use of a single tax database as described 

above is sufficient to model the evolution of taxes and benefits through time.15 However, our 

method also accommodates (real) policy variation over time. It is (conceptually) possible to 

 
13 Alternative interpolation methods could be used. Cubic interpolation, for example, has the 

advantage of implying a continuous differential at the expense of requiring four database 

observations for computation (e.g. Keys, 1981). 
14 The idea is that the output for each individual at each point in time projected by a dynamic 

model should include identifiers for matched individuals used to impute tax and benefit payments 

from the reference database. Validation might also take into account the anticipated incidence of 

referencing alternative database observations with respect to their associated weights (as pointed out 

by an anonymous reviewer). 
15 This includes when the system is fixed in either real or nominal terms. 
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consider a separate reference database for an arbitrarily large number of discrete time periods.  

This approach provides the analyst with tight control over the assumed temporal evolution 

of tax and benefit policy.16  

Between the two extremes of using the same reference database for all simulated years and 

a different reference database for each year, intermediate solutions are also possible that trade 

off flexibility for speed of execution. In simulation contexts where execution speed remains a 

concern17, changes between policy systems can be implemented as discrete jumps (i.e. the 

most recent policy system is used, with a step change when a new policy system is 

introduced), or smoothed using interpolation methods. Suppose, for example, that 𝑦𝑖,𝑡 

denotes disposable (post-tax and benefit) income of unit 𝑖 at time 𝑡. Two databases are used 

to impute disposable income, one that would apply at time 𝑡 = 0, and another at time 𝑡 = 𝑇. 

Then assuming geometric interpolation between the two databases, we have: 

𝑦𝑖,𝑡 = 𝑦𝑖,0. (
𝑦𝑖,𝑇

𝑦𝑖,0
)

𝑡/𝑇

  

This approach can be implemented without increasing the computational demands associated 

with evaluation of database matching, by limiting variation between the two reference 

databases to the reported taxes and benefits.18 An added advantage of this limitation is that it 

would facilitate post-simulation diagnosis of imputed transfer payments, as each unit in the 

dynamic model would be matched to the same observation in both reference databases. 

2.4.3 Accommodating policy variation beyond the scope of a reference database 

Many dynamic simulations are currently concerned with features of the evolving economy 

that may not be accommodated in a reference database. The incidence and costs of long-term 

care in an aging population, costs of aging public infrastructure, and environmental 

degradation are all currently subjects of keen public interest, and effects of interest are largely 

beyond the scope of most existing static tax-benefit models.  

Where analysis focusses on fiscal policy that is beyond the scope of a reference database, 

then it remains possible to augment transfer payments imputed from the database with 

internally programmed functions that represent the subjects of interest. Suppose, for example, 

that we are interested in the fiscal reforms necessary to support the costs of long-term care. 

We have access to a static tax-benefit model (e.g. EUROMOD) that provides a detailed 

 
16 For instance, EUROMOD-based tax-benefit models facilitate creation of policy scenarios for 

future years, including automated uprating of input data. The resulting output datasets can then be 

imported in the dynamic model, and the model directed to use the most recent dataset for any given 

simulated year.  
17 Computation time remains a significant barrier to some classes of dynamic microsimulation 

model, including those that use dynamic programming methods to project behaviour through time. 

In such contexts, tax and benefit payments may need to be evaluated for many more sets of 

circumstances than are actually represented in simulation output, due to the methods used to identify 

utility maximising decisions. 
18 That is, each reference database should be derived from a tax-benefit calculator using the same 

input data. 
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description of the direct tax and transfer system, but omits long-term care costs. Suppose also 

that we are able to obtain functions that provide plausible projections for the costs of long-

term care.  

In this context, we can use a database derived from the static tax-benefit model to project 

much of the tax and transfer system, and supplement this with the functional descriptions for 

the costs of long-term care. Given the projected costs of long-term care, we can then explore 

alternative fiscal reform packages capable of supporting the long-term care costs. These 

reform packages could be explored by obtaining alternative counterfactual databases from the 

static tax-benefit model, or from additional functions devised specifically to reflect the fiscal 

reforms of interest. The point is that use of a database to impute taxes and benefits does not 

preclude the use of dedicated functions to reflect particular fiscal policies of interest.  

3 Practical Implementation 
LINDA is a dynamic microsimulation model designed to reflect the contemporary UK policy 

context. The model includes a detailed functional description of the UK tax-benefit system in 

April 2016 including assumptions for how benefit rates and tax thresholds evolve through 

time.19 The current section describes how LINDA was adapted to undertake a validation 

analysis of the proposed method for projecting tax and benefit payments, which is reported 

in Section 4. 

Following a standard validation strategy, we assume that the functional description of tax 

and benefit policy included in LINDA is correctly specified, and that the distributions of taxes 

and benefits simulated using the model are “pseudo-true”. We then used data generated by 

the model based on the functional description for taxes and benefits to create a tax database. 

This database reflects the type of data that could be obtained from a standard tax-benefit 

microsimulation model, such as UKMOD. Referring to equations (1) and (2) in Section 2.1, 

𝑓(𝑋𝑖) = 𝑓𝐷(𝑍𝐷,𝑖) =  𝑓𝑆(𝑍𝑆,𝑖) = 𝑝, and 𝑋𝑖 = 𝑍𝐷,𝑖 =  𝑍𝑆,𝑖. Finally, LINDA was amended to project 

tax and benefit payments based upon the tax database using the methodology outlined in 

Section 2.  

The remainder of this section provides some further technical detail of LINDA and how 

the methodology described in Section 2 was practically implemented. Section 4 returns to 

describe how the implementation described here was used to validate the proposed method 

for projecting transfer payments. 

3.1 Model overview 

LINDA presents a useful case-study for considering the proposed method for imputing tax 

and benefit payments because the model is expressly designed to explore behavioural 

responses to policy alternatives, and associated computational burden is a pressing issue of 

 
19 Associated programming code can be accessed as described in Appendix A.1. 
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concern.20  As LINDA is not the focus of the current paper, a brief overview of relevant aspects 

of the model is provided here, and the interested reader is referred to van de Ven (2017a) for 

technical detail.  

LINDA projects panel data at annual intervals for an evolving sample of simulated adults. 

The decision-making unit assumed by the model is the “benefit unit”, defined as a single adult 

or partner couple and their dependent children. The specification of the model considered for 

the current study projects consumption, private pension scheme participation, and labour 

supply decisions as though these are made to maximise expected lifetime utility, where utility 

takes a nested Constant Elasticity of Substitution form.  

The decision of whether to contribute to a private pension in each year is limited to 

individuals who choose to work, and pension contributions are defined as a fixed proportion 

of labour income. Labour supply is selected from three discrete alternatives for each simulated 

adult in each year, representing, full-time, part-time, and non-employment. The decision to 

supply labour involves a trade-off between leisure time and cash available for (non-durable) 

consumption. Consumption is chosen with respect to a standard budget constraint, with the 

upper bound to (unsecured) loans defined by each individual’s minimum net present value 

of all potential future streams of disposable (post-tax and benefit) income.  

The model projects relationship status, fertility, and mortality for each adult in each year, 

all of which are considered to evolve with uncertainty from one year to the next. Wage 

potential is assumed to evolve as a random walk with drift, and pension and non-pension 

wealth both evolve with certainty based on standard accounting identities.  

Starting with data reported by the Wealth and Assets Survey for the UK population cross-

section in 2017, the model is designed to generate panel data forward and backward through 

time. Entry and exit from the simulated population are designed to reflect forward projections 

for the evolving population cross-section. The model was parameterised to survey data 

reported up to 2017, following the method described in van de Ven (2017b).  

3.2 Practical implementation of proposed approach 

LINDA was amended for the current study to allow taxes and benefits to be projected using 

the database approach described in Section 2. The revised code permits taxes and benefits to 

be projected by LINDA using a wide range of data sources, including databases supplied by 

IGOTM and UKMOD. Details of the implementation are provided below, and associated 

programming code can be accessed as described in Appendix A.2. 

3.2.1 Importing the tax-benefit database 

LINDA was adapted with parameters and routines that permit data to be imported for up to 

two reference databases. Data for each database can be supplied in up to three files, which 

may distinguish between alternative units of analysis (household, tax unit, and individual 

 
20 The model is publicly accessible, and free to download from www.simdynamics.org. See also 

van de Ven (2017b,c). 

http://www.simdynamics.org/
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level data). The files are assumed to be saved in comma-separated-variable format, as this 

format is supported by a wide range of statistical software packages. The first row of each file 

is assumed to provide variable names, which are used by LINDA to manipulate the data. 

3.2.2 Matching methods 

As discussed in Section 2.3, multiple “levels” of matching are used to balance the 

countervailing objectives of obtaining matches between simulated and database observations 

that are as similar as possible, while also guaranteeing that a match is obtained for all 

observations generated by a dynamic microsimulation. LINDA uses benefit unit specific 

characteristics to identify three nested “coarsened exact matching levels”. The first matching 

level, which is most detailed, distinguishes between:  

• three age categories for the benefit unit reference person:  under 45 (child-rearing), 

under state pension age, and post state pension age 

• relationship status of the benefit unit: single, couple 

• number of children under 5 (schooling age) in the benefit unit (maximum 2) 

• number of children aged 5+ in the benefit unit (maximum 3) 

• renter status (distinguishing renters from non-renters) 

• three labour categories for each adult in the benefit unit (not employed, part-time 

employed, full-time employed) 

• and three private income categories for the benefit unit: under £225 per week (low), 

under £710 per week (middle), £710+ per week (high). 

The second (intermediate) matching level considers the same population division as the 

first, but aggregates the two lower age categories, considers a maximum of one child under 

schooling age, does not distinguish between renters and non-renters, and distinguishes only 

between employed and not employed adults. This reduction in detail considered for the 

matching process helps to match a wider set of observations projected by the dynamic model, 

at the expense of accepting greater diversity between matched observations. Finally, the third 

(most coarse) matching level considers the same population categorisation as the second but 

does not distinguish between child age (subject to a maximum of 3 children) and ignores 

differences by employment status. 

It may be noted that the matching method described above makes no allowance for a range 

of factors that commonly influence transfer payments, including contribution and wage 

histories, health status, care needs, and disability.21 The set of characteristics included for the 

coarse exact matching reflects those that are explicitly distinguished by the specification of 

LINDA considered here (discussed in Section 3.1). As discussed in Section 2, any influence 

that omissions from the matching routine have on tax and benefit payments described by a 

reference database will appear as random innovations in the transfer payments simulated by 

 
21 In more recent work, the authors take into consideration a wider range of characteristics for the 

matching process, including carer status, receipts and costs of social care, and income splitting; see 

van de Ven et al. (2024) for details. 
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the model. The effects of these features will consequently be indistinguishable from 

(unexplained) imperfect benefits take-up, tax avoidance, and tax evasion. 

Step 1: Starting with the first matching level described above, LINDA checks whether the 

respective subgroup implied by an observation’s characteristics, as reported by the reference 

database, is non-empty. If so, then the model proceeds to the next step in the procedure; if not, 

then the second, and finally the third matching level is consulted to find a matching sub-

population. The third matching level is designed to be sufficiently crude that all implied 

subgroups are non-empty.  

Step 2: LINDA searches through the matching subgroup identified in step (1) to select a 

“candidate pool” of observations that share the closest taxable incomes to the targeted 

individual. This step identifies a pool of candidates, rather than the single closest individual, 

to mitigate difficulties that might otherwise arise due to disparate measures of taxes and 

benefits reported for otherwise similar individuals by the reference database (due, for 

example, to imperfect take-up rates, tax avoidance, or tax evasion).  

Candidates are drawn from the subgroup identified in step (1) based on the proximity of 

their taxable incomes with respect to the targeted individual. Up to four measures of private 

income are accommodated for individuals within the “candidate pool”. Each candidate 

included in the pool is associated with a selection weight that combines their sample weight 

in the reference database with a factor that is inversely proportional to the difference between 

their taxable income and that of the targeted individual (subject to an income disregard), and 

to the total number of candidates. 

Consider, for example, a targeted individual with taxable income of 10, where the 

coarsened exact matched subgroup from the reference database (identified in step 1) is 

comprised of individuals with taxable incomes in the set (6, 7, 9, 11, 12, 12, 14). Then, only 

individuals in the matched subgroup with incomes in the set of four income values (7, 9, 11, 

12) would be included in the candidate pool.22 In this case, with an income disregard of 1 and 

equal sample weights, the selection weight would be 0.1 for the candidate with income 7, 0.3 

for each of the candidates with incomes 9 and 11, and 0.15 for the two candidates with income 

of 12.23 

Step 3: Given the candidate pool and associated selection weights as described in step (2), 

LINDA is adapted to use one of two methods to impute transfer payments. It can include all 

candidates for the imputation, with the contribution of each candidate defined by their 

 
22 Those with incomes of 6 and 14 omitted because their income values exhibit greater difference 

to the target individual than four other income values observed in the group identified from step 1. 
23 Weights obtained by evaluating for each candidate a test statistic equal to the absolute 

difference between the candidate’s income and the reference income, subject to a minimum defined 

by the income disregard. The maximum of all candidate test statistics is then identified (3 = abs(10 - 7) 

in the example where abs(.) denotes the absolute operator), and intermediate weights calculated by 

dividing the maximum by each candidate’s test statistic (for the candidates with income 12, this 

would equal 1.5 = 3 / abs(10 – 12)). Weights summing to one are then obtained by rescaling all 

candidate weights; in the example, this involves dividing each intermediate weight by the sum of all 

candidates’ intermediate weights, equal to 10 = 1 + 3 + 3 + 1.5 + 1.5. 
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respective weight. Alternatively, it can select a single donor by random draw for each 

individual at each point in time, with probabilities of selection reflecting each candidate’s 

selection weight. 

3.2.3 Optimising the matching method 

LINDA starts by distinguishing, for each “matching level” (of three, see Section 3.2.2), the 

coarsened exact matching subgroup of each observation described by data loaded in for a 

reference database. Within each subgroup, observations are also ranked by their respective 

private (pre-tax and benefit) incomes.  These results are stored in a three-dimensional matrix, 

𝑀(𝑘, 𝑔, 𝑟), distinguishing the matching category, 𝑘 ∈ {1,2,3}, the category subgroup, 𝑔, and 

the income rank, 𝑟.   

Consider any observation projected by LINDA, 𝑖, for which tax and benefit payments need 

to be imputed. Starting from the most detailed matching level, 𝑘 = 1 , and the vector of 

observation i’s characteristics (age, relationship status, dependent children, etc.), 𝑣𝑖, a function 

is used to identify the respective subgroup, 𝑔𝑘,𝑖 = 𝑓(𝑘, 𝑣𝑖) . If the respective matching 

subgroup is empty, 𝑀(𝑘, 𝑔𝑘,𝑖 , . ) = 0 , then the next level, 𝑘 + 1 , is considered. Otherwise, 

starting from 𝑗 = 1, LINDA compares the private income of observation 𝑖, 𝑥𝑖, with the private 

income of the database observation 𝑀(𝑘, 𝑔𝑘,𝑖, 𝑗) , 𝑥𝑗 . If 𝑥𝑖 > 𝑥𝑗 , then LINDA proceeds to 

observation 𝑗 + 1. Nearest neighbours to include in the candidate pool are selected about the 

first rank where 𝑥𝑖 ≤ 𝑥𝑗 or where the matching subgroup 𝑀(𝑘, 𝑔𝑘,𝑖, . ) is exhausted (whichever 

comes first). 

4 Validation 
As previously mentioned, we assume that the specification of LINDA based on a functional 

description of tax and benefit payments is correct, and that associated simulated data derived 

from the model are “pseudo-true”. Given these assumptions, we use projections from LINDA 

to create a tax database as described in Section 2.1. This tax database mimics information that 

could be derived from survey data or a standard tax-benefit calculator, such as UKMOD.  

4.1 Analytical approach  

The starting point for the current analysis is a functional description of tax and benefit 

payments that was implemented in LINDA. This function was designed to reflect UK policy 

applicable in April 2016, focussing on variation of payments with respect to the number and 

age of household members. Tax thresholds and retirement benefits were also assumed to 

evolve through time in line with real wage growth (1.29% per annum, see Appendix A.1 for 

details). Given this specification for tax and benefit payments, LINDA was used to simulate 

panel data for adults in the evolving UK population cross-section between 2017 and 2081. This 

simulation is referred to below as the “function base scenario”.  
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After evaluating the function base scenario, a “function reform scenario” was simulated.  

The function reform scenario was specified to be identical to the base scenario, except that all 

rates of income tax were increased by 10 percentage points. Effects of this reform were then 

evaluated by subtracting summary statistics evaluated for the function base scenario from the 

same statistics evaluated for the function reform scenario. 

The above analysis was then repeated under identical assumptions, apart from replacing 

the internally programmed tax and benefit function with database approximations as 

described in Sections 2 and 3. This involved identifying reference databases for two arbitrarily 

selected years (2017 and 2057) for each tax and benefit function (base and reform). Two 

reference databases were required for each tax (and benefit) function to capture the real 

growth assumed for tax rates and retirement benefits, following the approach described in 

Section 2.3.2.  

All four reference databases (base and reform, 2017 and 2057) were populated from the 

panel data generated assuming the “function scenarios” described above. For example, the 

database for 2017 used to approximate the function base scenario was populated with data 

generated for 2017 under the function base scenario. 

This analysis was carefully designed to facilitate evaluation of the database method for 

imputing tax and benefit payments. First, imputing tax and benefit payments using databases 

populated with data derived from specific tax and benefit functions permits clear conclusions 

to be drawn. That is, any differences between projections generated using the function and 

database descriptions for tax and benefit payments can be interpreted unambiguously as 

distortions associated with the database method. Such differences arise because of imperfect 

matches between the simulated agents and records described by the database, and to the 

variables used for matching donors and recipients, which do not include all of the arguments 

of the considered tax functions (Section 2.1, point iv). 

Secondly, the fact that the assumed tax function allows for trend variation in tax thresholds 

and retirement benefits allows the current analysis to assess the efficacy of the method 

outlined in Section 2.3.2 for accommodating temporal variation using the database approach. 

Finally, use of a structural model of decision-making to consider the effects of a policy 

reform permits an assessment of the ability of the database method to capture behavioural 

incentives. Such incentives are interesting to consider here because they are likely to reflect 

margins of policy detail of interest. 

The current validation exercise consequently focusses on the ability of matching methods 

to reflect a known functional description for transfer payments. This focus concerns the key 

relative weakness of the proposed methodology, relative to functional descriptions for 

transfer policy. It is consequently important to bear in mind that the current analysis does not 

concern the relative advantages that motivate the proposed methodology: greater flexibility 

in defining input data for a dedicated static tax-benefit model (points i and ii in Section 2.1), 

and delegation of functional representation of evolving tax and benefit policy to policy 

specialists (iii in Section 2.1).   
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Simulation run-times 

Relative to the functional description for transfer payments, the database method for imputing 

net transfer payments required almost identical run-times, for both the base and reform 

scenarios. Related statistics are reported in Appendix C.1. 

4.2 Transfer payments for a population cross-section 

A series of test statistics for alternative population cross-sections were evaluated to explore 

the correspondence between net tax and benefit payments imputed from the functional and 

database descriptions for policy. Representative statistics from this analysis are reported in 

Table 4.1, focussing here on simulated data projected by LINDA for 2037.  The year 2037 is 

interesting, because it is intermediate to the two years for which database descriptions for 

policy were explicitly supplied (2017 and 2057).  The correspondence between the functional 

and database descriptions for tax and benefit payments evaluated for 2037 consequently 

reflect both the description of policy in the considered reference years (2017 and 2057), and 

the (geometric) interpolation methods applied between them (described in Section 2.3.2). 

The statistics reported in Table 4.1 indicate a reasonably close correspondence between the 

measures of net transfer payments imputed using functional and database descriptions for 

the policy environment, for both the base and reform scenarios.  Correlation coefficients 

between the measures of net transfer payments are between to 0.93 and 0.98 for the full 

population cross-section and all population subgroups, except for those under state pension 

age and working couples with no children.24   

Correlation coefficients are smaller for the population over state pension age (67) primarily 

due to the smaller net transfer payments identified for this population subgroup. In the case 

of working couples without children, the matching methods considered here are complicated 

by income splitting that is important in the UK, where taxes are levied on individual incomes. 

In related work, we have consequently extended the matching routine considered here to 

account for individual incomes via the incorporation of Mahalanobis distance metrics, as 

discussed in Section 2.3 (see Bronka et al., 2023). 

The mean and (sample) standard deviations for differences between the database and 

functional measures for transfer payments indicate that these differences are not significantly 

different from zero for any of the population subgroups at any appreciable confidence 

interval. Although mean absolute differences are higher for the reform scenario, relative to 

the base, they are smaller when the respective statistics are expressed as percentages of the 

sample means for net taxes evaluated under the functional description for policy (left most 

column of the table).   

 
24 Note that contributory benefits, which may be poorly reflected by the assumed matching 

methods, do play a role in the UK tax benefit system, but this role has declined appreciably over 

recent decades. 
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Table 4.1: Correspondence between net tax burden imputed using functional and database 

descriptions for transfer payments of simulated population cross-section in 2037 

  

mean 
correlation 
coefficient 

mean 
difference 

standard 
deviation of 
difference 

mean 
absolute 
difference 

base policy scenario 

full population 84.26 0.930 -12.07 98.68 36.93 

single working aged no children 44.63 0.960 1.01 58.10 23.27 

single working aged with children 84.73 0.971 3.50 104.34 55.34 

couple working aged no children 212.75 0.816 -72.01 191.77 85.24 

couple working aged with children 307.99 0.957 -0.32 128.66 57.83 

single pensioner 2.39 0.807 -13.52 45.88 22.00 

couple pensioner 33.36 0.786 -22.34 70.08 26.08 

reform scenario (all rates of income tax increased by 10 percentage points) 

full population 105.64 0.936 -17.34 112.70 43.10 

single working aged no children 57.57 0.947 -1.67 66.99 26.96 

single working aged with children 121.36 0.974 -2.28 119.98 62.81 

couple working aged no children 245.93 0.868 -87.95 214.95 101.98 

couple working aged with children 384.35 0.961 -10.82 153.67 68.49 

single pensioner 5.71 0.860 -14.67 47.00 23.86 

couple pensioner 41.68 0.847 -27.79 82.25 32.27 

Source: Authors' calculations using simulated data         
Notes: working age adults between 18 and 66 years; pensioners aged 67 and over; children include all dependents aged 0 to 17 
years; all income measured in £ per week; "mean" reports sample arithmetic averages for net taxes evaluated using functional 
description for transfer payments; "correlation coefficients" report correlations between net tax payments evaluated using 
functional and database descriptions for transfer payments. "mean difference" statistics report sample averages for net taxes 
evaluated using database description for transfer payments less net taxes evaluated using functional description for transfer 
payments. "standard deviation of difference" statistics report sample statistics for "mean differences". "mean absolute difference" 
statistics report sample averages for absolute differences between net taxes evaluated using functional and database descriptions 
for transfer payments. 

 

4.3 Base policy projections 

Simulating a base policy context, representing a “status-quo” scenario, is a common starting 

point considered for analysing the effects of a policy reform. Although the statistics reported 

in Table 4.1 indicate that, all else equal, the two alternative methods for imputing tax and 

benefit payments considered here are similar, they are not identical. Here we explore the 

practical bearing that the alternative methods for projecting taxes and benefits had on 

simulated profiles under the base policy scenario. 

Figure 4.1 displays age specific arithmetic averages for selected characteristics of 

simulated adults born between 1980 and 1989. Consideration of multiple birth cohorts 

increases the sample of individuals contributing to the reported statistics. This helps to filter-

out noise in the projected profiles: projections obtained using data of single-year birth cohorts 

are qualitatively similar to those reported here. To further clarify, averages displayed in 

Figure 4.1 for age 40 are based on simulated data for year 2020 for the oldest contributing birth 

cohort (born in 1980), and 2029 for the youngest birth cohort. 

The panels of Figure 4.1, taken together, display close similarities between projections 

based on functional and database methods for projecting tax and benefit payments. There are, 
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nevertheless, some noticeable differences between the two sets of projections reported in 

Figure 4.1, which it is useful to discuss. 

The top panel of Figure 4.1a displays a close correspondence between the labour supply 

projected using the database and functional descriptions for tax and benefit payments for the 

ten birth cohorts born between 1980 and 1989. The most obvious disparities between the two 

series are reported from age 40: between ages 40 and 59 projected labour supply is appreciably 

higher using functional descriptions for transfer policy, and vice versa at higher ages. The 

differences between the two series peak at age 50, when labour supply projected under the 

functional description for transfer policy averages 36.9 hours per week, 2.5 hours higher than 

under the database description. 

The differences in labour supply projections discussed above are also reflected by the 

statistics reported for disposable incomes in the middle panel of Figure 4.1a. Like labour, 

projected disposable income is almost identical under the two methods for projecting transfer 

payments until age 40, is appreciably higher between ages 40 and 59 under the functional 

method, and vice-versa from age 60. In contrast, measures of consumption projected using the 

two methods for projecting transfer payments (bottom panel of Figure 4.1a) are almost 

identical until age 70. From age 70, projected consumption reflects disposable income, with 

measures based on the functional description for transfer policy systematically lower than 

those based on database imputations. 

Both panels of Figure 4.1b indicate slightly higher wealth accrual to age 60 under the 

functional description for transfer payments, relative to the database imputations, followed 

by a faster decline in pension wealth at higher ages. These statistics help to complete an 

underlying narrative: distortions attributable to imperfections in the database description of 

functional tax and benefit payments imply slightly stronger savings and work incentives 

during peak working years (40-60). The higher savings permit slightly earlier retirement, 

resulting in a faster drawdown of wealth, which is particularly evident for wealth held in 

private pensions. The faster drawdown of wealth, in turn results in lower disposable incomes, 

which support lower consumption later in life. Nevertheless, it is important to recognise that 

the scale of distortions identified here is generally slight. 

As previously noted, these distortions arise from the fact that some variables considered 

by the tax functions are not included or imperfectly approximated by the matching procedure. 

Greater accuracy can be achieved by increasing the individual-specific detail considered for 

the matching procedure. In the limit, when all variables considered by the tax functions are 

perfectly reflected by the matching procedure used to identify donors in the tax database, no 

distortions will arise. Note, however, that this last conclusion depends upon a sufficiently 

large and diverse tax database, so that associated small sample issues are avoided.  

It is also noteworthy that the tax-benefit calculators and survey datasets that we envisage 

as sources for compiling a tax database typically describe at least as many individual-specific 

characteristics as a functional representation of taxes and benefits programmed within a 

dynamic heterogenous household model. This is important because it permits flexibility in 

specification of the matching methods used to impute taxes and benefits from the reference 
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database. Given sufficient population diversity in the tax database, the implication is that the 

imputation method outlined in this study should not suffer from a loss of policy detail, 

relative to functional methods for representing taxes and benefits.  
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Figure 4.1a: Selected age-specific simulated population averages projected under the base 

policy scenario for cohorts born between 1980 and 1989, by method of transfer payment 

imputation 

  

  

  
Source: Authors’ calculations using simulated data 

Notes: Age specific population averages evaluated for population cohorts born between 1980 and 1989. All 

financial figures reported in 2017 prices. The two series reported in each panel are distinguished by the method 

used to impute tax and benefit payments. The “base policy scenario” refers to an assumed status-quo policy 

environment. 
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Figure 4.1b: Selected age-specific simulated population averages projected under the base 

policy scenario for cohorts born between 1980 and 1989, by method of transfer payment 

imputation  

  

  
Source: Authors’ calculations using simulated data 

Notes: See notes to Figure 4.1a. 

4.4 Projected effects of a policy reform 

This section reports the effects of a simulated policy reform, in which all rates of income tax 

are increased by 10 percentage points from 2017. This policy experiment is designed to clarify 

two related points. First, that the projected profiles reported in Section 4.4 for the “base policy” 

environment are sensitive to assumed tax and benefit policy parameters; and second that the 

extent of this sensitivity is similar when tax and benefit payments are simulated using 

function and database methods. These related points carry over to more complex reforms 

implemented over alternative time horizons. 25  The current discussion focusses on 

comparisons between the respective methods for projecting tax and benefit payments, rather 

than the effects of the simulated reform scenario per sè. 

 
25 More complex reforms associated with additional intermediate policy configurations have been 

considered using the SimPaths model; see Bronka et al. (2023). 
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Comparisons of statistics for the reform projections “in levels”, as reported for the base 

policy projections in Section 4.4, are reported in Appendix C. These do not provide 

qualitatively useful information that adds to the discussion in Section 4.4. The current analysis 

consequently focusses on the effects of the reform, as described by the difference between the 

reform and base projections for policy, simulated using the two alternative methods for 

imputing tax and benefit payments.  

Figure 4.2 displays projected effects of a 10-percentage point increase in all income tax 

rates for the same 10 birth cohorts considered in Section 4.4.  These 10 birth cohorts, who were 

born between 1980 and 1989, were aged between 28 and 37 when the policy reform is assumed 

to take affect (2017). Echoing discussion in Section 4.4, Figure 4.2 displays age specific 

averages projected under the reform scenario, less the same averages projected under the base 

policy scenario.  

As discussed in Section 3.1, LINDA projects savings and employment decisions as though 

they are made to maximise expected lifetime utility. The rise in income tax rates consequently 

imply income and substitution effects underlying the projected behavioural responses. The 

income effects of the considered policy reform tend to reduce consumption and increase 

labour supply. The substitution effects, in contrast, tend to reduce labour supply and have 

ambiguous implications for consumption, as leisure is made less expensive and saving more 

expensive relative to immediate (non-durable) consumption.  

The top panel of Figure 4.2a indicates that the substitution effects tend to dominate 

labour/leisure responses, as employment is projected to fall under the higher income tax rates. 

Importantly, this is true for simulations based on both functional and database methods for 

projecting tax and benefit payments.  

Nevertheless, it is notable that the projected falls in employment between ages 40 and 55 

are appreciably larger when transfer payments are imputed using the database method, 

suggesting exaggerated substitution effects for labour supply. The larger falls in peak-

working age employment projected using the database description for policy are, however, 

off-set by a more pronounced delay in the timing of retirement under the reform, relative to 

the functional description for policy. The overall impact is a widening of the disparities of 

labour supply projected using the functional and database descriptions for transfer policy, 

which are identified for the base simulation in Section 4.4. 

The middle panel of Figure 4.2a reveals very similar age profiles for the effects of the policy 

reform on disposable income generated using the functional and database descriptions for 

policy. Disposable income is projected to fall appreciably from age 25 to 50, reflecting the 

increase in taxes implied by the rise in income tax rates, the projected declines in employment, 

and – later in life – falls in savings (discussed below). Although maintaining very similar 

profiles, disposable income is seen to fall slightly more under when simulated using database 

descriptions for tax and benefit payments between ages 40 and 60, reflecting the more 

pronounced falls for employment described above. From state pension age, both methods for 

projecting fiscal transfers suggest similar declines in disposable income, equivalent to 

approximately 4% relative to the simulation base. 
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The bottom panel of Figure 4.2a also indicates very similar age profiles for the effects of 

the policy reform projected using the two methods for reflecting transfer policy; this time for 

consumption. It is striking that both methods for projecting transfer payments suggest cohort-

average declines of consumption between 5 and 8 percent from age 40. This is slightly lower 

than the 10% increase in all income tax rates considered for analysis, despite the coincident 

fall in employment, as not all income is subject to income tax.  

Figure 4.2b also indicates broadly similar effects on wealth of the rise in income tax rates 

projected using the functional and database descriptions for policy. Both figures indicate more 

prominent declines of wealth to age 55 when transfer payments are projected using database 

methods, with the differences between the simulated profiles closing later in life. These 

differences reflect the more pronounced falls in employment projected to age 55 followed by 

delayed retirement when transfer payments are projected using database methods. 

Nevertheless, it is important to recognised that in all cases the signs of projected behavioural 

responses are independent of the method used to project transfer payments, and the scale of 

differences between the two methods is limited to a few percentage points. 

The overall impression made by Figure 4.2 is consequently that projected responses to the 

policy reform derived from the functional and database descriptions for transfer policy are 

qualitatively similar. These qualitative similarities are complemented with broadly similar 

quantitative effects projected using the two methods for simulating transfer payments, where 

the latter are subject to some discernible differences in precise scale and timing. 
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Figure 4.2a: Selected age-specific population average effects of a 10-percentage point 

increase in income tax rates on cohorts born between 1980 and 1989, by method of transfer 

payment imputation 

   

 

   
Source: Authors’ calculations using simulated data 

Notes: Age specific population averages for population cohorts born between 1980 and 1989 projected under the 

policy reform, less the same statistics projected under the base simulation scenario. All financial figures reported 

as percentage changes relative to the base simulation scenario. The two series reported in each panel are 

distinguished by the method used to impute tax and benefit payments. 
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Figure 4.2b: Selected age-specific population average effects of a 10-percentage point 

increase in income tax rates on cohorts born between 1980 and 1989, by method of transfer 

payment imputation  

   

   
Source: Authors’ calculations using simulated data 

Notes: See notes to Figure 4.2a. 

5 Conclusions 
This paper describes a new method for imputing taxes and benefits in dynamic heterogenous 

agent models, that draws upon existing third-party data sources, including (static 

microsimulation) tax-benefit calculators. A practical implementation of the approach is 

described for a model parameterised to the UK policy context, and simulated statistics 

indicate that the proposed method can generate similar results – both qualitatively and 

quantitatively – to functional methods for imputing tax and benefit payments. These similar 

results were also obtained in similar simulation run-times.  

Notably, a comparison against a functional representation of the tax and benefit system 

can be a more demanding test than applying the method to real-world data. The functional 

form reflects an “ideal” version of the tax and benefit system, which excludes the noise and 

errors stemming from issues such as tax-evasion or incomplete benefit take-up potentially 

found in real-world data. Even small matching discrepancies become apparent when 
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compared to the precise functional-form outputs, but might be otherwise indistinguishable 

from natural variation present in real-world data. Validating against the functional form thus 

requires the proposed method to precisely replicate an idealised system, making it a more 

demanding test than one based on real-world data.  

The proposed method offers the possibility of outsourcing the technical challenges 

associated with reflecting the complexity and fluidity of modern tax and transfer systems, 

either to statistical agencies responsible for the collection of widely available survey micro-

data, or specialists in the construction of tax-benefit calculators. It is hoped that this will 

facilitate the development of more realistic dynamic heterogenous agent models (including 

dynamic microsimulation and agent-based models), thereby mitigating a potentially 

important source of simulation bias.  

An advantage of the proposed method is that it can be easily adapted to reflect the 

influence of an expanded set of simulated characteristics on tax and benefit payments.  

Consider, for example, an existing dynamic model that used the proposed method to project 

transfer payments.  Suppose that this dynamic model did not distinguish health status, but 

the reference database used to impute taxes and benefits payments did.  Then, the influence 

on transfer payments of adding health status to the dynamic model would involve updating 

the matching routine used to impute transfer payments to distinguish by health status: it 

would not be necessary for the details of health-related tax and benefit programmes to be 

defined explicitly. 

A caveat associated with the proposed method is that it cannot make-up for missing detail 

in a dynamic model structure. Specifically, a tax or benefit policy will only be suitable for 

analysis using the proposed approach if (1) it is reflected by the tax-benefit calculator, and its 

incidence is distinguished by both the (2) assumed matching method adopted for imputation 

and (3) the wider dynamic model. It is important that all three of these conditions are met for 

a policy to be eligible for analysis. In this regard, particular care should be exercised in relation 

to the matching methods employed, as these may be especially opaque to model users in some 

contexts.  

Consider, again, the case where a dynamic model did not distinguish health status, but 

the reference database used to impute taxes and benefits payments did.  In this case, health-

related benefits described by a tax-benefit calculator will appear as (conditionally) random 

variations in the tax and benefit payments projected by the dynamic model. These random 

variations will be indistinguishable from all other features that influence transfer payments in 

the tax-benefit calculator but are unaccounted for by the assumed matching methods. 

The emphasis on outsourcing in this paper contributes to a modelling paradigm that 

focusses on modular functionality, and toward the development of hybrid models more 

generally. Although the current study exclusively considers the problem of simulating tax and 

benefit payments, the suggested approach could conceivably be adapted to address a wide 

range of simulation problems, from relationship transitions, to fertility, and the evolution of 

health status.  
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Appendix A: Code 

Appendix A.1: Functional description of UK tax and benefit payments 

applicable in April 2016 

Fortran code is provided in text file UK2016.f90. 

Appendix A.2: Database imputations for taxes and benefits 

Fortran code is provided in text file taxdb_comms.f90. 

Appendix B: Analysis Walk-through 
1. Download the LINDA quick-start guide from: 

https://www.simdynamics.org/index_htm_files/quick%20start%20guide.docx 

a. Note that LINDA is based on a model framework called SIDD 

b. LINDA can be downloaded from: 

i. https://www.simdynamics.org/download.html 

2. Work through Sections 1.2 (Loading the model onto a new computer) and 1.3 

(Extracting base data from the Wealth and Assets Survey) of the quick-start guide. 

3. Implement parameters to project transfer payments based on internally programmed 

functions for the UK in 2016 

a. Make a copy of MODEL\Job File.xls with name “Job File original.xls” 

b. Open MODEL\Job File.xls 

c. Worksheet “tax params” 

i. Copy columns AJ to AO 

d. Worksheet “input”,  

i. Paste to columns AH to AM 

ii. Set cell AO2 to 7 

iii. Set cell AO3 to 8 

iv. Set cell AO5 to 0 

4. Run base simulation assuming internally programmed functions for the UK in 2016: 

a. Job File.xls, worksheet “input”,  

i. Revise preference parameters to adjust for altered tax system 

https://www.simdynamics.org/index_htm_files/quick%20start%20guide.docx
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1. Set cell Y3 to 0.982 

2. Set cell Y4 to 0.972 

3. Set cell Y10 to 2.3 

ii. Set cell A2 to “base2017_fn” (without quotation marks) 

iii. Set cell BQ35 to 1 (generate cohort statistics reported in Section 4.4) 

b. Save 

c. Run SIDD.exe 

i. Note that this simulation takes appreciably longer to run than most 

others described below. 

5. Create database for functional description of policy in base specification 

a. Open MODEL\ANALYSIS_FILES\tax_test3.xls 

b. Worksheet “analysis” 

i. Set cell C2 to 2017 

ii. Clear all data from row 7 in columns A to AA 

c. Add input data in columns A to W with values generated by the model for 

2017 under the “base2017_fn” simulation, implemented in step (4)  

i. TIP: The steps described under 5.c.ii below require Excel to open large 

data files.  Depending on your system, this may not be possible, and a 

short Stata do file is consequently provided with the appendix 

materials to facilitate extraction of the required data – the Stata file 

copies slightly more data than described below. 

ii. Collate required data 

1. Open a new (temporary) Excel file 

2. Open file MODEL\SIMULATIONS\base2017_fn\age.csv 

3. Copy rows 1 to 40000 from column 66 

a. In Excel, you can change to R1C1 format to see column 

numbers via the File > Options > Formulas > Working 

with formulas menu 

4. Paste the data to cell A1 of Sheet1 of the temporary Excel file 

5. Close file MODEL\SIMULATIONS\base2017_fn\age.csv 

6. Repeat for data in columns B to Y of Sheet1 of the temporary 

Excel file, where:  



 

 36 | P a g e  

a. Data for column B are from file na.csv 

b. Data for column C are from file nk.csv 

c. Data for column D are from file nk_all1.csv 

d. Data for column E are from file nk_all2.csv 

e. Data for column F are from file nk_all3.csv 

f. Set Cells G1 to G40000 to 0 

g. Set Cells H1 to H40000 to 0 

h. Set Cells I1 to I40000 to 1 

i. Set Cells J1 to J40000 to 1 

j. Data for column K are from file emp1.csv 

k. Data for column L are from file emp2.csv 

l. Data for column M are from file labinc.csv 

m. Data for column N are from file peninc.csv 

n. Data for column O are from file cpinc.csv 

o. Data for column P are from file ppc.csv 

p. Data for column Q are from file ninvinc.csv 

q. Data for column R are from file w.csv 

r. Data for column S are from file hsgw.csv 

s. Data for column T are from file hsgmd.csv 

t. Data for column U are from file hsgret.csv 

u. Data for column V are from file hsgmr.csv 

v. Data for column W are from file comexhs.csv 

w. Data for column X are from file psnno.csv (column 1) 

x. Data for column Y are from file ben_unit.csv 

y. Keep only rows where column X is equal to column Y  

i. TIP: You should be left with a sample of 

approximately 25000 observations. 

7. Delete data in columns X and Y of the temporary Excel file 
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iii. Copy all remaining data from the temporary Excel file (or the Stata do 

file) to columns A to W of tax_test3.xls, analysis worksheet, starting at 

row 7. 

iv. Set cell C3 of tax_test3.xls, analysis worksheet to the number of rows of 

data copied from the temporary Excel file 

1. Note that the last row of data in tax_test3.xls, analysis 

worksheet should be equal to the value in cell C3 + 6 

v. Close the temporary Excel file without saving (if necessary) 

vi. Save tax_test3.xls and close file 

d. Open MODEL\Job File.xls 

e. Worksheet “input” 

i. Set cell A2 to “temp” (without quotation marks) 

ii. Set cell BQ55 to 1 

f. Save 

g. Run SIDD.exe 

h. Open MODEL\SIMULATIONS\temp\tax_test3.xls 

i. Extend the “reference database” worksheet to reference all data in the 

“analysis” worksheet 

i. Copy cells A6 to AA6 down to reference all rows of data included in 

the “analysis” worksheet 

1. Note that the last row of data in the “reference database” 

worksheet should be two rows above the last row in the 

“analysis” worksheet  

j. Save tax_test3.xls 

k. Copy all data in the “reference database” worksheet, from row 4 to the last row 

in the worksheet, and from column A to AA 

l. Open new workbook 

m. Paste values to Cell A1 

n. Create subdirectory: MODEL\TAX_DATABASE\base_fn 

o. Save the new workbook as 

MODEL\TAX_DATABASE\base_fn\base_2017.csv 

i. CSV format (not UTF8) 
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1. Note: if you receive a warning, proceed by accepting the format 

p. Close all files 

q. Copy and paste the file tax_test3.xls from MODEL\SIMULATIONS\temp\ to 

MODEL\ANALYSIS_FILES\ 

r. Open MODEL\ANALYSIS_FILES\tax_test3.xls 

s. Worksheet “analysis” 

i. Set cell C2 to 2057 

t. Save file and close 

u. Run SIDD.exe 

v. Open MODEL\SIMULATIONS\temp\tax_test3.xls 

w. Worksheet “reference database” 

i. Copy all data in the “reference database” worksheet, from row 4 to the 

last row in the worksheet, and from column A to Z  

x. Open new workbook 

y. Paste values to Cell A1 

z. Save file as MODEL\TAX_DATABASE\base_fn\base_2057.csv 

i. CSV format (not UTF8) 

aa. Close all files 

6. Set simulation from (4) as base 

a. Open MODEL\Job File.xls 

b. Alt+F8 

c. Run SIDD macro 

d. Form 0 – specify new base using simulation “base2017_fn” 

i. Enter “base2017_fn” in the two empty text boxes at the bottom of the 

form 

e. Press the “CONVERT RUN TO NEW BASE” button 

7. Run reform of 10% increase in all income tax rates using functional description for 

policy 

a. Open MODEL\Job File.xls 

b. Worksheet “input”,  
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i. Set cell A2 to “10pp_fn” (without quotation marks) 

ii. Set cell AI12 to 0.3 

iii. Set cell AI13 to 0.5 

iv. Set cell AI14 to 0.55 

v. Set cell AI106 to 0.55 

vi. Set cell AI107 to 0.55 

vii. Set cell AI108 to 0.55 

viii. Set cell BQ35 to 1 (to generate statistics reported in Section 4.5) 

c. Save 

d. Run SIDD.exe 

8. Create database for reform of 10% increase in all income tax rates using functional 

description for policy 

a. Open MODEL\ANALYSIS_FILES\tax_test3.xls 

b. Worksheet “analysis” 

i. Set cell C2 to 2017 

c. Save file and close 

d. Open MODEL\Job File.xls 

e. Worksheet “input” 

i. Set cell A2 to “temp” (without quotation marks) 

ii. Set cell BQ55 to 1 

f. Save 

g. Run SIDD.exe 

h. Open MODEL\SIMULATIONS\temp\tax_test3.xls 

i. Worksheet “reference database” 

i. Copy columns A to Z from row 4 to the end 

1. TIP – Ensure that all instances from “analysis” worksheet are 

included in copied data 

j. Open new workbook 

k. Paste values to Cell A1 

l. Save file as MODEL\TAX_DATABASE\base_fn\10pp_2017.csv 
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i. CSV format (not UTF8) 

m. Close all files 

n. Open MODEL\ANALYSIS_FILES\tax_test3.xls 

o. Worksheet “analysis” 

i. Set cell C2 to 2057 

p. Save file and close 

q. Run SIDD.exe 

r. Open MODEL\SIMULATIONS\temp\tax_test3.xls 

s. Worksheet “reference database” 

i. Copy columns A to Z from row 4 to the end 

t. Open new workbook 

u. Paste values to Cell A1 

v. Save file as MODEL\TAX_DATABASE\base_fn\10pp_2057.csv 

i. CSV format (not UTF8) 

w. Close all files 

9. Implement parameters to project transfer payments based on database description for 

internally programmed functions for the UK in 2016 

a. Replace MODEL\Job File.xls with “Job File database.xls” included with this 

appendix 

b. Run SIDD.exe 

i. Note that this simulation takes appreciably longer to run than most 

others described here. 

10. Set simulation from (9) as base 

a. Alt+F8 

b. Run SIDD macro, 

c. Form 0 – specify new base using simulation “base2017_db” 

d. Press the “CONVERT RUN TO NEW BASE” button 

11. Run reform using database description for policy 

a. Open MODEL\Job File.xls 

b. Worksheet “input” 
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i. Set cell A2 to “10pp_db” (without quotation marks) 

ii. Set cell E38 to “10pp_2017.csv” (without quotation marks) 

iii. Set cell E48 to “10pp_2057.csv” (without quotation marks) 

iv. Set cell BQ35 to 1 (generate quintile statistics reported in Section 3.3.2) 

c. Save 

d. Run SIDD.exe 
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Appendix C: Analysis Supplementary Statistics 

Appendix C.1: Simulation run times 

Each policy context projected using LINDA involves two discrete stages: evaluation of utility 

maximising behaviour for any feasible combination of individual specific characteristics, and 

population projections based on the evaluated behavioural solutions. Tax and benefit 

imputations are important for each of these stages. Table 4.2 reports disaggregated 

computation times for the base (status-quo) and reform scenarios, for each method of 

imputing net transfer payments. 

Table 4.2 indicates that, relative to the functional description for transfer payments, the 

database method for imputing net transfer payments required almost identical run-times, 

both to evaluate behavioural solutions, and to project panel data for the population, for both 

the base and reform scenarios.26 

Table 4.2: Simulation run-times by policy scenario and method of transfer payment 

imputation 

  

behavioural 
solution 

population 
projection 

total 

net transfer payments imputed using database 

Base 54.5 90.9 145.4 

Reform 55.7 52.0 107.7 

net transfer payments calculated using function 

Base 54.3 87.0 141.3 

Reform 54.4 53.3 107.7 

Source: Authors' calculations using simulated data 
Notes: "base" defines reference policy context; "reform" defines policy context 
that is identical to "base" in all respects, expect that all income tax rates are 
increased by 10 percentage points. All times reported in minutes. Simulations run 
on workstation with dual Xeon E5-2670 processors and 96GB of RAM. 

 

  

 
26 The base simulation involves projecting data 65 years forward and 65 years backward through 

time – 130 years in total – starting from the reference cross-section reported for the UK in 2017. In 

contrast, the reform simulation starts from the data generated under the base simulation and re-

evaluates data only for the 65 years forward from 2017. This explains the longer computation time for 

population projections under the “base” policy scenario than for the “reform” scenario. 
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Appendix C.2: Supplementary figures for policy counterfactual 

Figure C.1a: Selected age-specific population averages projected under the reform policy 

scenario  of a 10-percentage point increase in income tax rates on cohorts born between 1980 

and 1989, by method of transfer payment imputation  

  

  

  
Source: Authors’ calculations using simulated data 

Notes: Age specific population averages evaluated for population cohorts born between 1980 and 1989. All 

financial figures reported in 2017 prices. The two series reported in each panel are distinguished by the method 

used to impute tax and benefit payments.  
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Figure C.1b: Selected age-specific population averages projected under the reform policy 

scenario  of a 10-percentage point increase in income tax rates on cohorts born between 1980 

and 1989, by method of transfer payment imputation  

 

  
Source: Authors’ calculations using simulated data 

Notes: Age specific population averages evaluated for population cohorts born between 1980 and 1989. All 

financial figures reported in 2017 prices. The two series reported in each panel are distinguished by the method 

used to impute tax and benefit payments. 
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