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Abstract 

 

We study the effects of digital transformation in the EU on individual employment outcomes, wage 

growth, and income inequality, during the decade 2010-2019. Our results allow us to formulate a 

“conveyor-belt” hypothesis suggesting that employment confers a competitive advantage in 

navigating the digital transition due to the accumulation of pertinent skills in the workplace. Because 

digital skills are acquired with the changing demands of the job, their initial endowment matters less 

for the employed than for the non-employed. Further, the ability of out-of-work individuals with 

higher digital skills to jump back on the labour market is reduced for those with higher education, 

suggesting a faster depreciation of their digital skills. A similar effect, although of limited size, is 

found for earning growth: out-of-work individuals with higher digital skills are not only more likely 

to find a job, but experience higher earning growth, compared to their peers with lower digital skills. 

Our results point to a vulnerability of workers “left behind” from the digital transformation and the 

labour market. The overall effects on inequality are, however, limited.  
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1. Introduction 

Ever since the Industrial Revolution in the XVIII and XIX centuries, technological change has been 

at times met with suspicion and anxiety.1 Fear of job displacement following periods of fast 

technological progress have troubled the public, researchers and policy-makers ever since. Today, 

people feel unease in watching computers and robots taking over tasks that were previously 

performed by humans. At the same time, however, technological change has opened up new job 

opportunities, both within existing sectors and – more importantly – in sectors that did not exist 

before. Given enough time to adjust, labour markets have coped remarkably well, historically. 

However, the effects on individuals might be very different from the effects on markets. Individuals 

often do not have enough time to adjust to rapid changes in the labour market. Moreover, they might 

not be able to adjust at all, for lack of sufficient skills, lack of mobility, or other issues. The new job 

opportunities might be captured by different people than those who lost their old ones.  

Against this background, an increasing body of research has attempted to estimate the impact of the 

digital transformation on the labour market. This has included research on the automation potential 

of digital technologies (e.g. Arntz, Gregory and Zierahn, 2016; Frey and Osborne, 2017; Nedelkoska 

and Quintini, 2018) and the aggregate impact of digitalisation on the labour market, looking for 

instance at job polarization, labour productivity or employment (e.g. Fernández-Macías and Hurley, 

2017; Graetz and Michaels, 2018; Georgieff and Hyee, 2022). The majority of contributions in the 

literature has focused on the industry or country level, while individual-level data has been relatively 

underused. However, some recent contributions do go in this direction, looking at the U.S. (Fossen 

and Sorgner, 2022) or individual European countries (Balsmeier and Woerter, 2019; Genz, Janser 

and Lehmer, 2019; Dauth et al., 2021). Most papers in this area have focused on OECD countries, 

with some exceptions that look at the impact of robots in emerging economies (Carbonero, Ernst and 

Weber, 2020) or the impact of AI on labour markets in low- and lower middle income countries 

(Carbonero et al., 2023).  

This article adds to this emerging empirical literature by quantitatively estimating the impact of the 

digital transformation on employment, wages, and income inequality in the 2010s, within the 

European Union (EU). Digital transformation is the process of using digital technologies to transform 

existing traditional and non-digital business processes and services, or create new ones, to meet with 

the evolving market and customer expectations, thus altering the way businesses are managed and 

operated, how value is delivered to customers, and crucially, how workers are employed in the 

production process  (Agarwal, 2020); (Majchrzak, 2016)). This transformation is not limited to 

technology itself but includes the strategic use of digital tools to reshape business operations, 

processes, and models, often impacting employees by automating tasks, altering roles, and requiring 

new skills (Vial, 2021). Our perspective on digital transformation thus underscores the evolving 

demands on workers in adapting to and utilising these tools within transformed business landscapes. 

We make several significant contributions to this stream of literature. First, we examine the impact 

of digital transformation on individual employment and earnings based on three different measures 

of digitalisation: two indexes of digitalisation in the labour market at the level of industries, and a 

novel index of digital skills at the individual level. While the indexes capture, by their very nature, 

only some aspects of the underlying phenomenon, they represent, however, an advance with respect 

to common analytical approaches that mainly rely on educational attainment to test for the 

differentiated impact of digitalisation on different skill levels. Second, we look at a large number of 

EU countries over a 10 year period (2010-2019), using the largest household survey data available 

 
1 In this paper, we adopt a deterministic view of technological change, treating it as an external factor that drives shifts in 

productivity, skill requirements, and labour demand, impacting economic outcomes in quantifiable ways. This approach 
models technological change as a neutral force, separate from social influences or intentions. While we acknowledge 
the body of literature that views technological change as socially constructed, driven by specific groups' interests and 
values, examining this process is outside the scope of the paper – on this, see for instance Bingham (1996), Wajcman 
(2002), Olsen & Engen (2007) or Dafoe (2015). Our goal is to assess the economic implications of technology on labour 
markets and workers, regardless of the social forces shaping it. This deterministic perspective allows us to focus on 
broad economic trends without delving into their underlying sociological forces. 
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in the European Union (EU-SILC). In doing so, we offer comprehensive new evidence that 

contributes to the ongoing debate on the impact of the digital transformation on individuals. Third, 

from a methodological perspective, we use an innovative approach to overcome the limitations of 

the EU-SILC's four year panel rotation structure. This approach, which we refer to as a “concatenated 

analysis”, involves repeated steps of estimation and simulation, and ultimately enables us to study 

individual outcomes and determinants of change over a longer period of time than previously 

possible for specific sub-groups of the population. In conclusion, in our analysis, we are able to 

leverage on the richness of EU-SILC data overcoming its two main shortcomings for the study of the 

impact of the digital transformation on individuals – without doubt one of the main secular trends 

transforming labour markets: the lack of measures of digital skills and the short longitudinal 

dimension of the data. Our findings allow us to support a “conveyor-belt” hypothesis, indicating that 

employment provides a competitive edge in managing digital transformation through the learning of 

relevant skills in the workplace.2 Digital skills prove to positively impact the probability of jumping 

on the conveyor belt for those who are not in employment. In other words, digital skills are relevant 

for securing employment and attaining higher-paying positions. This also points to the vulnerability 

of those left behind by the digital transformation and the labour market. Yet the effect of digitalisation 

on labour market outcome depends on individual workers' characteristics, inter alia, the level of 

formal education. Our findings show that digital skills are more relevant for accessing the labour 

market and securing better jobs for those with a low or medium level of formal education. This points 

to a more rapid depreciation of advanced digital skills, as highly educated individuals generally have 

a more specialised, task-specific type of human capital. Finally, as far as the overall level of income 

inequality is concerned, we find little evidence of a negative impact of the digital transformation. 

The results emphasise, from a policy perspective, the need for up- and re-skilling initiatives, 

particularly for older individuals. 

Our “conveyor belt” hypothesis is framed within the existing literature in Section 2, that reviews the 

theoretical mechanisms shaping the relationship between the digital transformation and individual 

employment, wages and inequality, as well as existing empirical evidence. Section 3 describes our 

three indexes of digitalisation, the econometric methods and the concatenated analysis in detail. 

Section 4 presents estimates of the impact of the various measures of digitalisation on employment, 

earnings and inequality. Section 5 summarises and discusses the findings.  

2. Theory and key findings from the literature 

2.1. How does digitalization affect employment and wages?  

There are various pathways through which the digital transformation may affect individual workers’ 

employment and wage outcomes. While advancements in digital technology could lead to 

displacement of workers and reductions in employment and wages, it is also possible that the digital 

transformation is accompanied by job creation and employment and wage gains. This section 

describes these theoretical mechanisms in detail and summarises existing empirical evidence.  

 

 
2 In our context, the phrase "conveyor belt" is employed to synthetically and metaphorically illustrate the dynamic trajectory 

of individuals in employment about the advancement of their digital skills in the workplace. Moreover, it highlights the 

comparative advantage of the employed over the not employed, emphasising the potential disadvantage experienced by the 

latter group. Although a formal “conveyor belt theory” does not exist in the social sciences, the term has consistently been 

employed to denote continuous change. The closest use of the term, also with a similar metaphorical sense, is found in a 

recent paper in the domain of labour market studies. Moss-Pech (2021) refers to a "career conveyor belt" for internships 

and delineates a systematic trajectory linking specific internships to permanent employment opportunities. Internships are 

frequently linked to prestigious educational establishments and leading corporations, facilitating a rapid pathway for chosen 

students to obtain employment post-graduation. On the contrary, students lacking such opportunities may endure extended 

job searches and experience less steady entry into the labour market. These dynamics underscore systemic inequities that 

influence career paths and long-term job stability among college graduates. 
 



On the one hand, displacement effects of the digital transformation may dominate, with negative 

effects on employment and wages. Digitalisation is advancing at an increasingly fast pace and new 

technologies are becoming capable of performing a range of tasks previously undertaken by human 

workers (Genz, Janser and Lehmer, 2019), a process that is sometimes referred to as technological 

task encroachment (Susskind, 2017). A significant strand of the literature on the labour market 

impact of  digitalisation has focused on estimating the automation potential of digital technologies, 

that is to say, the extent to which certain jobs could be replaced by technology. In a seminal 

contribution, Frey and Osborne (2017) estimated that in the United States, 47% of jobs are at high 

risk of automation (i.e. an automation risk higher than 70%). However, subsequent work stipulated 

that these numbers likely constitute an overestimation of the potential for automation. For instance, 

Arntz, Gregory and Zierahn (2016) take a task-based approach to automation potential, arguing that 

it is certain tasks within occupations that face a risk of replacement, rather than entire occupations as 

such. They estimate a much lower risk of automation in OECD countries, ranging from 6% in South 

Korea to 14% in Austria. Nedelkoska and Quintini (2018) carry out a similar exercise, although they 

expand the geographical scope of their analysis to include 32 countries. They estimate the overall 

share of workers at a high risk of substitution from automation to be at 14%.  

 

Hence, the overall extent to which jobs are at high risk of automation is uncertain, as well as likely 

evolving over time and dependent on a country’s institutional set-up (Merola, 2022). However, if 

tasks that were previously performed by labour are automatable and it becomes cheaper for 

technology (i.e. capital) to take over these tasks, they are expected to be automated and displaced 

(Acemoglu and Restrepo, 2019). Where this displacement effect dominates, individual workers who 

are affected by labour displacing technologies should experience reduced employment stability and 

wage growth (Fossen and Sorgner, 2022). 

 

The potential displacement effect, which is the focus of studies on automation potential, only 

showcases one side of the equation, however. This effect may be mitigated by a number of 

countervailing factors, as set out by Acemoglu and Restrepo (2018a, 2018b, 2019) in a series of 

contributions. First, digitalisation may be associated with positive productivity effects, leading to 

increases in the demand for labour in non-automated tasks, both in sectors undergoing automation 

and in sectors that are not affected. Productivity effects could occur through both a price-productivity 

and a scale-productivity effect. The former refers to technology leading to a compression in prices, 

which allows the industry to expand sales and take on more workers, while the latter states that lower 

aggregate prices may lead to an expansion in the local economy and associated spill-over effects 

whereby adjacent industries increase their demand for labour. In addition, increased automation may 

trigger capital accumulation, which in turn, is associated with an increased demand for labour. 

Finally, automation may increase the productivity of tasks that have already been automated (the so-

called “deepening of automation”), which may be linked with increased productivity but not 

displacement.  

 

Beyond these productivity effects, a significant mechanism to countervail the effects of automation 

is the creation of new tasks through digitalisation, which may lead to employment and wage gains 

for individual workers (Acemoglu and Restrepo, 2019; Fossen and Sorgner, 2022). New tasks could 

be more complex versions of existing tasks or completely new activities, potentially complementing 

technology (Fossen and Sorgner, 2022). Workers may have a comparative advantage relative to 

machines in these new tasks, directly leading to a reinstatement effect that counterbalances potential 

displacement (Acemoglu and Restrepo, 2018a). As such, it would be expected that digitalization is 

associated with increased employment and wages for workers.  

 

Whether the displacement effect or compensating mechanisms dominate at the aggregate level is 

ultimately an empirical question. An increasingly large body of research looks at this question, most 

commonly investigating the employment impact of technological change on the labour market. The 

findings of this literature are complex and depend on the level and scope of the analysis (Filippi, 

Bannò and Trento, 2023). Nevertheless, research has increasingly challenged the idea of wide-spread 

automation of jobs due to technological change. Hötte, Somers and Theodorakopoulos (2023) 

conduct a meta-analysis of 127 studies investigating the employment effect of technological change 

between 1988 and 2021. Across these studies, they find substantially larger support for a labour-
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creating impact of technological change than a labour-displacing impact, and conclude that on 

aggregate, substitution effects of technology appear to be offset by compensating mechanisms. For 

the European context, a number of recent studies have cast doubt on the notion of a widespread 

negative employment impact of digitalisation (Biagi and Falk, 2017; Pantea, Sabadash and Biagi, 

2017; McGuinness, Pouliakas and Redmond, 2023; Bachmann et al., 2024).  

 

As described, the impact of digitalisation on workers’ employment and wage outcomes is not 

theoretically clear-cut  and depends on the relative importance of displacement effects and 

countervailing mechanisms. Moreover, these effects are not mutually exclusive and may cancel each 

other out at aggregate level (Fossen and Sorgner, 2022). Based on the findings of the majority of 

recent empirical studies, we do not expect to find negative effects of digitalisation on employment 

and wages for workers at the aggregate level (Hypothesis 1).  

 

2.2. Skill-based heterogeneity in the effects of digitalisation on 

workers 

The previous section has set out how the impact of digitalisation on individual labour market 

outcomes depends on whether labour-displacing or labour-reinstating effects of technology 

dominate. Yet the effect of digitalisation on the labour market outcomes of individual workers is 

likely not uniform but rather depends on their individual characteristics. Specifically, the effects of 

technological change on workers’ employment and wage prospects are likely to differ by skill level, 

due to variance in the exposure to automation risk but also in the ability to adapt to new skill 

requirements.  

 

The literature on technological change has highlighted that the potential displacement effect of 

technology differs by the skill level of workers, as certain types of tasks are more likely to be affected 

by automation. The skill-biased technological change theory (SBTC) argues that new technologies 

are complementary to high-skilled workers while substituting for or being neutral with respect to 

lower-skilled labour. This should raise relative demand for higher-skilled workers, leading to 

improved wage and employment prospects for these workers (Müller, 2023). At the same time, 

higher-skilled individuals may be better positioned to benefit from productivity effects linked to the 

digital transformation. Employment and wage gains from technological advancement will only be 

realised for individuals who can adapt to new or transformed tasks resulting from the adoption of 

new technologies (Fossen and Sorgner, 2022). In contrast, where a mismatch between the 

requirements of new technologies and the skills of the workforce arises, positive effects of digital 

transformation through increases in productivity and the introduction of new tasks will likely be 

slowed down (Acemoglu and Restrepo, 2019). Higher-skilled individuals are more likely to have 

skills that are complementary to  technology and may also be better prepared to deal with and adapt 

to new skill requirements (Fossen and Sorgner, 2022; Müller, 2023). Combined, this should lead to 

positive employment and wage effects of digitalisation for higher-skilled individuals, at the expense 

of lower-skilled workers. On the other hand, to the extent that new digital technologies such as 

artificial intelligence allow unskilled workers to benefit from codified competences, their 

productivity level might rise, an effect that might be particularly important for allowing developing 

countries to catch up with the global technological frontier (Ernst, Merola and Samaan, 2019; 

Björkegren, 2023).  

 

A modified version of SBTC, the routine-biased technological change framework (RBTC), 

emphasises that repetitive, routine tasks, which are mainly performed in medium skilled occupations, 

are most likely to be replaced by technology, while more complex, non-routine tasks are 

complementary to technology (Autor, Levy and Murnane, 2003). This implies that employment at 

the bottom and top of the skill distribution is likely to grow more than employment in medium-skilled 

occupations, where workers are most likely to be disadvantaged in terms of employment and wages, 

ultimately resulting in employment and wage polarization (Goos and Manning, 2007; Genz, Janser 

and Lehmer, 2019). Goos, Manning and Salomons (2009, 2014) pool data for 16 European countries 

over the period 1993-2010 and demonstrate that the RBTC phenomenon is pervasive over the period, 



encompassing both within- and between-industry shifts towards a reduced input of routine-intensive 

tasks and increased usage of non-routine analytical skills.  

 

However, in the European context, recent scholarship provides evidence against a widespread pattern 

of job polarisation. Fernández-Macías and Hurley (2017) develop an indicator of routine intensity, 

aiming to stick as accurately as possible with the theoretical definition, and then run an analysis for 

23 European countries over the period 1995-2007. Discordant with Goos, Manning and Salomons 

(2014), they do not find the phenomenon of polarisation to be pervasive. On the contrary, they 

observe that, while polarisation seems to be occurring for some countries, "the most frequent 

development was in fact one of occupational upgrading", which is more closely aligned with the 

traditional SBTC hypothesis (Fernández-Macías and Hurley, 2017). Similarly, Oesch and Piccitto 

(2019), looking at four European countries, find no evidence of polarisation but rather – in line with 

SBTC – clear evidence of occupational upgrading in three countries (Germany, Spain; and Sweden), 

while in the UK, there is mixed evidence for job polarisation and occupational upgrading depending 

on the measure of job quality used.  In this sense, in the European context, there is only limited 

support for the polarisation hypothesis. One explanation for this is that empirically, the expectation 

that occupations dominated by routine tasks are mid-skilled is not borne out in Europe. Rather; 

occupations involving more routine tasks tend to be lower-skilled and less complex (Fernández-

Macías and Hurley, 2017; Oesch and Piccitto, 2019). Overall, we therefore expect higher-skilled 

workers to be more likely to benefit from digitalisation in terms of employment and wage outcomes 

(hypothesis H2).  

 

Moreover, the above mechanisms, while focused on the implications of technological change for 

employment and wages at individual level, also have implications for aggregate inequalities in the 

labour market. If technology leads to increases in relative demand for skilled labour as described 

above, this should be associated with wage gains for skilled workers in particular. Under this 

scenario, the resulting increase in the wage differential between high- and low-skilled workers should 

result in an increase in overall wage inequality (Kristal and Cohen, 2017). Hence, we expect negative 

effects of digitalisation on overall wage inequality (hypothesis H3a). However, the potential 

inequality-increasing effect may be countervailed by other forces, such as wage-setting institutions, 

which may be more important than technological change in driving down or increasing inequality 

(Ibid.). In this scenario, digitalisation is not expected to have effects on inequality at an aggregate 

level (hypothesis H3b). Unfortunately, directly testing the role of wage-setting institutions is beyond 

the scope of this article for two main reasons. First, as institutions typically change very slowly over 

longer periods of time there would not be enough variation in the data to exploit over the time period 

under study. Second, we employ a micro-analysis to make good use of the panel data structure of the 

EU_SILC in order to understand individual level outcomes and conduct a counterfactual analysis to 

explore how these outcomes may play a role in altering inequality at an aggregate level. 

Consequently, we would need to change the methodology and our approach to include institutions. 

Moving forward, this would be an interesting avenue for future research. 

 

2.3. Differentiating between different types of technology 

In practice, the effect of technology on employment and wage outcomes, and skill-based 

heterogeneity therein, likely depends on the type of technology examined. Much of the empirical 

literature has focused on the labour market effects of robots, which are likely to replace low- to 

medium-skilled labour, but to create fewer, higher-skilled tasks (Balsmeier and Woerter, 2019). 

Empirical findings tend to bear out this expectation. Graetz and Michaels (2018), looking at 17 

developed economies between 1993 and 2007, find no significant effect of robots on aggregate 

employment, but a displacement effect for low-skilled and medium-skilled workers. Dauth et al. 

(2021) equally find no negative effects of robot exposure on total employment in Germany but find 

job losses in the manufacturing sector which were offset by gains in services. Similarly, average 

earnings of individual workers are hardly affected by robots, but this masks positive earnings effects 

for retained workers transitioning to new tasks and negative effects for those switching jobs. In this 

sense, skill upgrading is a significant part of the adjustment process to automation (Ibid.).  
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However, findings on robotics may not generalize to other types of technology. Other recent 

contributions to the empirical literature make use of linked employer-employee data that allows for 

investigating firm-level take up of technologies. Genz, Janser and Lehmer (2019) look at the use of 

digital tools by workers and firms’ technological upgrading in Germany. They find that 

establishment-level investment in technology has positive effects for workers’ wage development, 

with the most pronounced positive effects found for low- and medium-skilled workers.  

 

Overall, these divergent results highlight the need for an integrative examination of effects of 

different types of technologies. Recently, several empirical contributions have made strides towards 

examining the joint effects of several technologies in order to provide a fuller picture of the digital 

transformation. Balsmeier and Woerter (2019), using Swiss data, find that increased investment in 

digitalisation increases employment of high-skilled workers, but decreases that of low-skilled 

workers. However, these effects are driven by machine-based technologies (e.g. robots), while non-

machine-based technologies do not have effects. For the United States, Fossen and Sorgner (2022) 

compare four measures of digital technology. Measures of labour-displacing technologies are 

associated with slower wage growth and a higher likelihood of switching employment and non-

employment for individuals, while labour-reinstating technologies have positive effects on labour 

market outcomes, with highly educated workers the most affected by technological change. These 

studies illustrate the need for a nuanced understanding of the impact of technology on the labour 

market, which may depend not only on the characteristics of workers but also on the type of 

technology introduced, which may be associated with varying automation potential and impact on 

skill demand.  

3. Data, Variables and methods 

As we discussed above, the relationship between digital transformation on the one hand, and labour 

market outcomes on the other, is theoretically and empirically ambiguous and depends on the time 

horizon considered. In this paper, we set out to quantify the overall effect of the digital transformation 

that took place over the decade 2010-2019 in the European Union.  

 

Our analysis requires a dataset containing detailed, longitudinal information on personal 

characteristics and labour market status. The main longitudinal survey for the EU , and a natural 

candidate for our analysis, is the EU Statistics on Income and Living Conditions (EU-SILC), which 

is available for all the current EU Member States. The longitudinal version of EU-SILC provides 

employment and earnings information with detailed disaggregation by income sources, although this 

information refers to the previous calendar year rather than the time of the interview.3 We restrict our 

analysis to the working age population (17-64 years of age, where 17 is the age an individual is first 

observed in the sample – i.e. the age in the initial period – and 64 is the age the individual is last 

observed in the sample – i.e. the age in the final period). We use three different waves of the 

longitudinal SILC data: 2013 (covering years 2010-2013), 2016 (2013-2016) and 2019 (2016-2019), 

for all EU countries with the exception of Germany.4  

 

3.1. Measures of the digital transformation 

We statistically match the longitudinal EU-SILC data with various measures of digital 

transformation, drawing on several data sources with time-variant data on digitalisation. In particular, 

we construct three indexes of digital intensity in the labour market. The first two indexes measure 

the process of digitalisation at the sectoral (macro) level and relate to the demand for labour. The 

third index measures digital skill at individual (micro) level and relates to the supply of labour.  

 

 
3 By contrast, EU-LFS has a more limited longitudinal component than EU-SILC, and income information is limited to deciles. 
4 SILC data is only available for Germany from 2018 onwards, a period too limited for our analysis. 



Measures of digital transformation at the sectoral level 

As highlighted in the previous section, the impact of digitalisation on individual labour market 

outcomes likely varies across different types of technologies. To account for this diversity, we 

construct two different sectoral-level indexes of the level of digital transformation in the labour 

market. The first index, which we label digital capital intensity, refers to intangible investments in 

digital technologies (software and databases). The second index (robot density) refers to tangible 

investments, in the form of industrial and service robots. The former also covers the increasing role 

of machine learning algorightms, insofar as they are embedded in software or software services (e.g. 

online subscriptions).5  

We construct our measure of digital capital intensity as the ratio between the stock of capital that 

firms have in software and databases, and the overall stock of capital excluding non-residential 

buildings, at the country/industry level. For this, we use data from the new integrated EUKLEMS & 

INTANProd database, developed by the Luiss Lab of European Economics at Luiss University in 

Rome, Italy (Bontadini et al., 2023). EUKLEMS & INTANProd updates the widely-used EUKLEMS 

productivity database and extends it with new estimates of intangible investment coherent with the 

INTAN-Invest framework.  

This database incorporates “Software and Databases” (labelled as “Soft_DB”) under its intangible 

assets category. This category is designed to capture expenditures associated with software 

development and acquisition, as well as database-related investments, including both purchased and 

internally developed components. Accordingly, it can capture a number of digital innovations that 

gained widespread adoption in the period 2010-2019. Software solutions that would feature therein, 

and thus in our digital capital intensity index, include, inter alia, cybersecuirty services, Robotic 

Process Automation (RPA), and Customer Relationship Management (CRM) systems. The index 

also captures software services powered by Artificial Intelligence (AI) and machine learning 

algorithms, which in the 2010-2019 period began to influence customer service, predictive analytics, 

and personalised marketing, though their adoption was less extensive than it is today. Importantly, 

the scope of Soft_DB aligns with the evolving nature of software delivery models, which increasingly 

include cloud computing and Software-as-a-Service (SaaS). Specifically, costs associated with SaaS 

subscriptions, cloud-hosted software platforms, and related services would fall within the category 

of purchased software. Similarly, expenses for developing proprietary software solutions that 

leverage cloud infrastructure would be included under the internally developed software component 

of Soft_DB. By integrating expenditures for both traditional and cloud-driven software solutions, the 

category ensures comprehensive representation of critical intangible digital investments. Conversely, 

the index may fail to capture, or capture only to a smaller extent, other transformative processes that 

took place in this period, such as the precipitous rise of social media platforms, themselves aided by 

the advent of 4G networks and improvements in mobile technology. 

The EUKLEMS & INTANProd dataset covers all EU countries for the period 1995-2019, and 

provides both measures of investment (flows) and stock of capital. We opt for looking at the capital 

stock, as this is less volatile and provides a better description of the extent of the ongoing 

digitalization process. The index is missing for Cyprus, Hungary, Ireland and Romania, and it is also 

missing – irrespective of the countries – for industries T (Activities of Households as Employers; 

Undifferentiated Goods and Services Producing Activities of Households for Own Use) and U 

(Activities of Extraterritorial Organisations and Bodies) in the NACE2 industry classification. Figure 

A1 in Appendix A shows the evoluation of the digital capital intensity index by country over time. 

Second, we compute an index of robot density at the country/industry level based on the International 

Federation of Robotics (IFR) Industrial and Service Robots dataset (IFR, 2023).TheIFR effectively 

collects data on installations of robotic equipment from robot manufacturers and cross-checks the 

result with statistics from national institutes of robotics to ensure high levels of reliability and 

comparability. A robot is defined by the IFR according to the standard classification ISO 8373:2021, 

as “[an] automatically controlled, reprogrammable, multipurpose manipulator programmable in three 

 
5 The introduction of AI is posterior to our period of investigation, but it would have been captured by our indicator – subject to the same 

caveats. 
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or more axes, which can be either fixed in place or mobile for use in industrial automation 

applications”. As such, our index can shed considerable light on the extent of automation – i.e. a 

salient aspect of digitalisation – in the manufacturing industry. Figures for EU Member States are 

generally available, although some smaller countries (Bulgaria, Cyprus, Croatia, Estonia, Latvia, 

Lithuania, Luxembourg, and Malta) recorded too few installations to guarantee an insightful 

breakdown by industry. We compute our index of robot density as the operational stock of robots per 

thousand employees. To derive this measure at the sectoral level, we merged the information 

concerning the operational stock of robots from the IFR dataset with information on the number of 

employees reported in the EUKLEMS & INTANProd data. The IFR’s industry classification is 

derived and loosely organized according to the NACE Rev. 2 standard taxonomy, which is the same 

categorisation adopted by the EUKLEMS & INTANProd. However, no exact correspondence can 

be found, and codes may differ, as classes that feature only minor installation counts were aggregated 

whereas major customer industries, such as the automotive sector, report various sub-categories. 

Therefore, we had to perform the appropriate aggregations to ensure that a match between the two 

sources could be found. Appendix A (Figure A2 and Figure A3) shows descriptive information on 

the evolution of the robot density index by country and industry over time.  

We match the two indicators of the digital transformation to the longitudinal EU-SILC data based on 

the sectoral information. However, a significant methodological limitation exists, as industry 

information is not available in the longitudinal SILC data. We solve this challenge by statistically 

matching longitudinal SILC data (recipient dataset) with their cross-sectional counterpart (donor 

dataset), where that information is available.  

The probabilistic matching is performed by comparing the donor and recipient datasets based on a 

sub-set of common variables, thus identifying a “best-match” for each observation in the recipient 

dataset. In order to reduce the number of possible matches, we use between five and eight so-called 

“blocking variables” which require an exact match between a recipient observation and a possible 

donor (i.e. the values must be identical). Three variables are consistently blocked for all countries: 

year of observation, year of birth, and sex. Dependent on data availability, other blocking variables 

may be used on top of these: region, urbanisation, education, marital status, basic activity status, 1-

digit ISCO-08 occupation, employee net cash income, and employee gross cash income. When a 

variable is not used as a blocking variable, but is available for the country being processed, it is added 

into the probabilistic matching process as a “non-blocking variable” and is allowed to not match 

exactly. Non-blocking variables include living in consensual union, hours usually worked, years 

spent in paid work, and self-defined economic status. A score is then constructed based on the non-

blocking variables to measure the similarity between each pair of longitudinal and cross-sectional 

observations. For each longitudinal (recipient) observation, we select the cross-sectional observation 

with the highest score as the donor. Industry information from the donor – together with other 

variables relevant for the analysis if they are missing from the longitudinal observation (as is 

sometimes the case for region) – are then donated to the recipient. Results of the matching are very 

good for all countries with the exception of Malta, with over 90% of the longitudinal observations 

matched to a cross-sectional donor on average, usually with a very high score. Matching rates for all 

countries are shown in Appendix A (Table A4). Imputation of the two demand-side indicators of 

digital intensity is then straightforward and involves imputing the value of the indicator for the 

industry in which the worker is employed (if any). 

 

Incorporating skill-based heterogeneity  

The theoretical framework highlighted that the effect of the digital transformation on individual 

labour market outcomes may vary by individuals’ level of skills. We account for potential skill-based 

heterogeneity in two ways, in our analysis. First, we estimate the effects of the different measures of 

digitalisation separately for individuals with low, high and medium levels of education, so that 



heterogeneity in the effects of the measures of the digital transformation can be assessed.6 However, 

while education is commonly used as a measure of skill levels in the literature (e.g. Graetz and 

Michaels, 2018; Dauth et al., 2021), it is only a proxy measure predominantly capturing formally 

acquired skills, and may also mask heterogeneity in skills within educational levels (Quintini, 

2011).Therefore, we incorporate a measure of individuals’ actual level of digital skills in our analysis. 

This allows us to directly assess whether, in line with theoretical expectations, having skills that are 

complementary to the use of technology has positive impacts on individual labour market outcomes.  

 

To construct our index of digital skill, we employ microdata from the Community Survey on ICT 

usage in households and by individuals (hereafter: ICT Survey), an annual survey conducted by 

Eurostat since 2002, aiming at collecting and disseminating harmonised and comparable information 

on the use of ICT in households and by individuals. The ICT survey contains detailed information 

on individual’s use of technologies in a range of areas. To construct our measure of digital skills, we 

use 22 variables measuring different aspects of digital skills in four categories: information skills; 

communication skills; problem solving skills; and software skills.7 All these variables are binary, 

with a value of 1 if the individual has carried out a particular task taken to be indicative of (some 

level of) digital skill. We use data for the years 2015-2016, 2017 and 2019, for which the full set of 

variables is available. This allows us to construct a time-varying index of digital skills.  

 
We aggregate the available categorical indicators by weighting them using an item response theory 

(IRT) model. IRT is a methodology for aggregating a number of items in order to capture an 

underlying trait, in this case true digital skills, and is widely established as a method for constructing 

measures of skill and ability (OECD, 2016). Based on individuals’ responses for each binary variable 

(or item) capturing digital skill, the model estimates the item’s difficulty (the level of digital skills at 

which 50% of individuals would be expected to have performed the skill) and discrimination (a slope 

parameter indicating how steeply the likelihood of an individual performing this skill changes as true 

digital skills increase) (Demars, 2010).The implication is that the IRT model allows for estimating 

differentiated levels of difficulty for each aspect of digital skill, rather than simply averaging across 

variables. The results of the IRT model are shown in Appendix A (Table A1). In a second step, we 

use the results of the IRT model to predict a level of digital skills for each individual in the microdata, 

yielding a continuous measure of digital skill.8 Table A2 in Appendix A shows descriptive statistics 

on the estimated level of digital skills across various population groups. As a final step, we estimate 

a simple OLS regression model (Table A3 in Appendix A) predicting individual levels of digital skill 

based on individual characteristics (gender, age, employment status, occupation, and education) 

separately for each year and country.9 The resulting estimates of levels of digital skills by population 

characteristics can subsequently be matched to the longitudinal microdata based on the set of 

common variables.  

 

 
6 Low education: ISCED levels 1-2; medium education: ISCED level 3; High education: ISCED levels 4-5. 

7 The variables included are (see Eurostat, 2023): Information skills – copied or moved files or folders; saved files on Internet storage 

space; obtained information from public authorities/services‘ websites; finding information about goods or services; seeking health-related 

information; Communication skills – sending/receiving emails; participating in social networks; telephoning/video calls over the internet; 
uploading self-created content to any website to be shared; Problem solving skills – transferring files between computers or other devices; 

installing sotware and applications; changing settings of any sofware; online puchases; selling online; using online resources; Internet 

banking. Software skills – Used work processing software; used spreadsheet software; used software to edit photos, videos or audio files; 
created presentation or documents integrating text, pictures, tables or charts; used advanced functions of spreadsheet to organise and 

analyse data; have written code in a programming language.  

8 The measure is standardized to mean 2 and standard deviation 1, following OECD (2016).  

9 Given that the indicators in the ICT Survey only cover the years 2015, 2016, 2017 and 2019, we impute the indicator to the years non 

covered by estimating a linear time trend – hence assuming that the trend in digital skills between 2010 and 2014 is the same as between 

2015 and 2019. 
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3.2. Econometric specification 

We focus on estimating the impact of our measures of digital transformation on two outcomes, 

employment and earnings. We distinguish between gross and net earnings to investigate a potential 

role of welfare state policies in mitigating against the effects of the digital transformation.10 Models 

are estimated for each country in isolation and for the EU as a whole.11  

The employment model is estimated separately for the whole population and for the sub-sample of 

individuals who start as employed, and follows a simple logit specification of the type: 

𝑒𝑖
end =  𝐿𝑜𝑔𝑖𝑡(𝑒𝑖

start, 𝑥𝑖
start,  𝑑𝑖

start, ∆𝐷𝑗 𝜖𝑖)  (1) 

where 𝑒𝑖
end and 𝑒𝑖

start are respectively the employment state in the final and initial period of the 

analysis (employed / not employed; dropped when the model is estimated on the sub-sample of 

individuals starting in employment), 𝑥𝑖
𝑠𝑡𝑎𝑟𝑡 are the individual characteristics in the initial period, 

𝑑𝑖
𝑠𝑡𝑎𝑟𝑡 is the composite index of digital skills for individual i in the initial period, ∆𝐷𝑗 is the change 

between the initial and final period in the indexes of demand of digital skills (only included when 

estimating the model on the sub-sample of individuals employed in the base year, for which industry 

information is available), and 𝜖𝑖 is a random disturbance. The start and end period vary depending 

on the sample being used – see Section 3.3 below).  

Note the two different indexes of digital skills involved: 𝑑𝑖 is the individual-level measure of digital 

skills described above. 𝐷𝑗 on the other hand is a sectoral-level measure of digitalisation (digital 

capital intensity and robot density), computed on data aggregated at the industry level. It is an 

attribute of the industry, not of the individual: as such, two individuals employed in the same industry 

– but with different occupations - will have the same value of  ∆𝐷𝑗. Moreover, the indicator is not 

defined for individuals who are not employed, which prevents us from using it when including this 

sub-group of the population in the estimation sample.  

Note also that controlling for a heterogenous level of digital skills 𝑑𝑖 is crucial in the analysis, as we 

can expect the supply of digital skills to correlate with other individual characteristics such as age 

and education.  

As for what concerns time variation of the indexes of digital skills, two things have to be noted: 

• 𝑑𝑖 only enters in the initial period of the analysis. This is because we cannot rule out that the 

evolution of individual skills depends on individual employment outcomes. This reverse 

causation introduces endogeneity and strongly suggests removing measures of individual 

digital skills at later periods from the specification. 

• 𝐷𝑗 enters both in the initial and in the final period, to capture changes in labour demand.  

In addition to the employment state (𝑒𝑖
start), the individual characteristics (𝑥𝑖

start) that we control for 

in the analysis of employment transitions, all measured in the base year, are: age (2nd polynomial), 

sex, education (three levels), region (NUTS-2), degree of urbanisation (for most countries: urban, 

rural and mixed), occupation (ISCO-08 1-digit classification, only for those starting in employment), 

 
10 We use total gross household income (variable HY010) for gross earnings, and total disposable household income (variable HY020) for 

net earnings. Total gross household income (HY010) is computed as the sum for all household members of gross personal income 

components plus gross income components at household level. disposable household income (HY020) is gross income minus taxes plus 

benefits. Values are yearly. 

11 With the exception of Germany, as explained above. 



and gross earnings quintiles.12 As mentioned above, to account for heterogeneity in the effects of the 

digital transformation, we also introduce interaction terms between our three indicators of digital 

transformation and education.  

Gross and net earnings are then (separately) modelled following a linear specification where the 

outcome variable is the percentage change in earnings, ∆𝑦𝑖.
13 We use the same covariates of the 

employment models, but also control for the employment state in the final year, 𝑒𝑒𝑛𝑑: 

∆𝑦𝑖 =  𝑏0 + 𝑏1𝑒𝑠𝑡𝑎𝑟𝑡 + 𝑏2𝑒𝑒𝑛𝑑 + 𝑏3 𝑥𝑖
start + 𝑏4 𝑑𝑖

start + 𝑏5 ∆𝐷𝑗 +  𝑏6𝐼𝑖, 𝜖𝑖)  (2) 

where I stands for the interaction terms (same as above). Accordingly, in the analysis we first 

simulate employment outcomes, and then earnings conditional on employment outcomes. 

The earning model is estimated separately for those observed as employed in the initial year, and for 

those observed as not employed. For the not employed, just as for the employment model described 

above, we exclude the indicators of demand of digital skills, as industry information is not available 

for this group.  

 

3.3. Concatenated analysis  

The rotational panel structure of EU-SILC is limited to 4 years. To address the limited longitudinal 

dimension of EU-SILC, we perform a concatenated analysis where labour market outcomes are 

simulated over a 10-year horizon based on the econometric results for shorter periods. More 

specifically, we exploit the overlapping nature of EU-SILC data, where in each wave there are 

individuals that are also included in previous waves. Figure 1 describes the iterative estimation-

simulation procedure.  

 

 
12 The degree of urbanisation is dropped from the specification for the Netherlands and Slovenia, as the variable is missing for those 

countries.  
13 More precisely, we approximate the percentage change in earnings with the logarithmic difference, then approximate logarithms with 
the inverse hyperbolic sine transformation to avoid the problem that logarithms are not defined at 0 (the inverse hyperbolic sine of 0 is 0). 

Hence, our outcome variable is also defined when earnings in the initial period are 0 – in this case its value is simply the inverse hyperbolic 

since of earnings in the final period. 
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Figure 1: Concatenated analysis  

 

Labour market outcomes are estimated using the 2016-2019 longitudinal wave, based on individual 

characteristics measured in 2016. The relationship between 2016 inputs and 2019 outputs is then 

exploited to simulate 2019 outputs for the 2013-2016 wave. Predicted labour market outcomes in 

2019 are then related to observed inputs in 2013, using the 2013-2016 wave of data. The relationship 

between 2013 inputs and 2019 (predicted) outputs is then exploited to simulate 2019 outputs for the 

2010-2013 wave. This allows us to finally relate 2010 inputs to 2019 (predicted) outcomes.14 

The concatenated analysis therefore involves the following steps: 

1. Estimation of 2019 outcomes (employment and earnings) on 2016-2019 wave. 

2. Simulation of 2019 outcomes on 2013-2016 wave, based on the results of Step 1. 

3. Estimation of 2019 (projected) outcomes on 2013-2016 wave.  

4. Prediction of 2019 outcomes on 2010-2013 wave, based on the results of Step 3. 

5. Estimation of 2019 (projected) outcomes on 2010-2013 wave. 

Only the observations present in all 4 years of each wave are kept for the analysis; the number of 

observations retained varies from country-to-country but is around one-quarter of the total number 

of observations.15 Appendix B reports the sample for each country and provides descriptive statistics 

for our estimation sample.  

 
14 We also run analyses on each sub-period (2010-13, 2013-16 and 2016-19) separately. The analyses on the sub-periods do not require 

simulation, and are therefore safe from a possible source of error/noise. Results on the sub-periods (available on request) broadly confirm 

the general pattern emerging from the concatenated analysis. 

15 In order to increase sample size, we could include observations with only two or three years of presence in the data, but this would 

require increasing the number of steps in the concatenated analysis, with dubious effects on the quality of the results.  



Prediction of employment outcomes from the logit models produces individual probabilities of being 

employed. These are then turned into predictions about employment outcomes by means of a 

Montecarlo simulation.16 As this procedure involves stochastic events (the random draws of the 

Montecarlo simulation), we repeat it 100 times when estimating the models on the pooled EU-wide 

dataset, and 25 times for each country in the country-specific models. We then compute point 

estimates as averages of the point estimates obtained in each run, while bootstrapped confidence 

intervals are computed based on the variability of the point estimates in each run. 

As an illustration of the process, Appendix C discusses each step in detail with reference to the pooled 

EU sample, providing estimation results and validation statistics for one random Montecarlo draw. 

Results based on 100 Montecarlo replications are presented in the next Section. 

 

4. Results 

4.1. Effects on employment 

Our first set of results concerns the effects of the digital transformation on employment, by levels of 

education. We first discuss the results of the effects of two measures of digitilisation at the sectoral 

level, digital capital intensity and robot density, on employment. As described previously, the effects 

of (changes in) these indicators can be measured, at an individual level, only for those who start as 

employed and for whom industry affiliation is therefore defined. The sample is therefore restricted 

to individuals who are employed in the base year. Table 1 shows the estimated mean, standard 

deviation, minimum and maximum for the coefficients for the two sectoral-level measures of 

digitalisation, as computed on the 100 Montecarlo repetitions of the concatenated analysis on the 

pooled EU sample. For ease of interpretation, the coefficients are expressed in odds ratio: they 

therefore measure the increase in the odds of being employed in 2019 corresponding to a one standard 

deviation increase in the value of the index in 2010. Values above 1 indicate a positive effect of 

digital skills, while values below 1 indicate a negative effect. 

None of the effects are statistically significant, meaning that we find no evidence of either negative 

or positive effects of the digital transformation on individual employment outcomes. In other words, 

individuals who have a job seem to be, on average, insulated from the effects of digitalisation, in 

terms of the probability of remaining in employment. In line with our first hypothesis, we do not find 

evidence of a significant negative employment impact of digitalisation. In addition, contrary to 

hypothesis H2, there is no indication of skill-based heterogeneity in the effects of the digital 

transformation on employment, when measuring skills in terms of the level of formal education. 

When running the models separately for each country, in accordance with the EU-level analysis, 

results are rarely significant. Industry-level changes in the level of digitalisation do not appear to 

affect insiders (i.e. those already in work) much, in terms of their likelihood to remain in 

employment.17 

We next present the results for our individual-level measure of digital skills. Table 2 reports the 

mean, standard deviation, minimum and maximum for the coefficients for the digital skills index, as 

computed on the 100 Montecarlo repetitions, separately for the whole EU sample and for those who 

started as employed in 2010. Again, coefficients are expressed in odds ratio, measuring the increase 

in the odds of being employed in 2019 corresponding to a one standard deviation increase in the 

 
16 This involves drawing a random number from a uniform distribution between 0 and 1, and comparing it with the estimated probability. 

A positive outcome (in our case, employment) is then assigned if the random number is below the predicted probability – this happens 

exactly with the predicted probability. 

17 Although it is possible that these individuals change job / industry, something we cannot check in our data. Details of the country-

specific analysis are available on request. 
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value of the index in 2010. Values above 1 indicate a positive effect of digital skills, while values 

below 1 indicate a negative effect.  

 

Table 1 : Estimated odds ratio for the effects of changes in digital capital intensity and robot density in 

the industry of employment in 2010 on 2019 employment status. Sample: EU27 (excluding Germany) 

 Digital capital intensity Robot density 

Sample Employed Employed 

Education Low Medium High Low Medium High 

Mean effect 1.031 1.069 1.075 1.004 1.000 0.998 

Std.dev. 0.127 0.084 0.126 0.008 0.003 0.006 

Min 0.853 0.880 0.861 0.984 0.994 0.990 

Max 1.405 1.286 1.549 1.022 1.005 1.024 

Note: The table reports summary statistics for the estimated coefficients from Step 5 over 100 repetitions of the 

concatenated analysis. The coefficients measure the increase in the odds of being employed in 2019 corresponding to a one 

standard deviation increase in the value of the index between 2010 and 2019 (an odds ratio of 1 indicating no effects). 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

 

Table 2 :  Estimated coefficients for the effects of the 2010 endowment of digital skills on 2019 

employment status. Sample: EU27 (excluding Germany). 

Sample All Employed 

Education Low Medium High Low Medium High 

Mean effect 1.443 1.447 1.221 1.003 1.190 0.984 

Std.dev. 0.091 0.088 0.128 0.219 0.247 0.209 

Min 1.300 1.264 0.931 0.469 0.593 0.524 

Max 1.743 1.666 1.531 1.959 2.033 1.463 

Note: The table reports summary statistics for the estimated coefficients from Step 5 over 100 repetitions of the 

concatenated analysis. The coefficients measure the increase in the odds of being employed in 2019 corresponding to a one 

standard deviation increase in the value of the index between 2010 and 2019 (an odds ratio of 1 indicating no effects). 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

 

The coefficients for the overall population are strongly positive, especially for individuals with a low 

and medium level of education. In contrast, they are on average not significant  in the sample of 

individuals initially observed as employed. This suggests that the effect of digital skills is particularly 

strong for those who start not in work.18 The country-specific analysis confirms that this pattern is of 

 
18 The overall effect (estimated) being a weighted average of the effect for the employed (estimated), and the effect for the not employed 

(not estimated). The reason for not estimating the model separately on the sub-sample of non-employed individuals in 2010 is the smaller 
sample size of this group, which is problematic in the context of our non-linear specification for employment outcomes. Results for the 

not employed are therefore inferred by comparing results for the whole population and results for the employed. 



general validity throughout the EU. We find that, for most countries and in the samples including all 

working age individuals, digital skills endowment in 2010 increases the probability of being 

employed in 2019 (Figure 2). There is some heterogeneity across EU countries in terms of the 

magnitude of this effect, but the effect is consistently positive. As in the EU-wide analysis, the effect 

is strong especially for individuals with low or medium education. However, when we reduce the 

sample to those who were in employment in 2010, the effect disappears. Consistent with the EU-

level analysis, the effect is therefore stronger for those not in employment.  

The Montecarlo analysis hence shows that digital skills are important to find a job, yet less so to 

retain it. The results provide some evidence in support of hypothesis H2 and the broader theoretical 

expectations associated with SBTC: individuals with higher levels of digital skills – i.e. a type of 

skill that is by design complementary to technology - appear to be advantaged in terms of 

employment outcomes. It should also be stressed that the effect of digital skills is observed even 

while holding constant individuals’ level of education. This highlights the fact, as discussed 

previously, that the level of education does not capture heterogeneity in (digital) skills to a sufficient 

extent. The fact that the positive effect of digital skills is reduced for individuals with high education 

may reflect the high average level of digital skills of this group (see Appendix B, Tables B2-B4), 

which could imply that having digital skills is less significant as a differentiating factor between 

individuals. Furthermore, their more advanced skills might experience a faster depreciation, given 

that highly-educated individuals tend to have more specialised, task-specific human capital (Fossen 

and Sorgner, 2022).  

Our analysis of the effects of digital transformation on EU economies over the period 2010-2019 

finds that digital skills positively impacted employability (probability to find a job for those not in 

employment), especially for individuals with low and medium education. This result is consistent 

with a “conveyor belt hypothesis”. Work is the conveyor belt that accompanies individuals through 

change, the digital transformation in our case. Those in work adapt and evolve, together with the 

labour market. Those out of work can hope to jump on the conveyor belt and their chances of doing 

so are related to their level of digital skills, among other things. This is a hypothesis that we advance 

based on our empirical results, but that would require more testing, ideally exploiting linked 

employer-employee administrative datasets. 

If confirmed, our results point both to an overall strength of the EU labour markets, given the increase 

in digital skills observed during the period, and to individual vulnerabilities. The other side of the 

coin, in fact, is that individuals who have missed the digital transformation and have therefore 

accumulated lower digital skills have been put at a disadvantage.  
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Figure 2 – Effects of digital skills endowment in 2010 on the probability of being employed in 2019 

(odds ratio) by education attainment level, all individuals aged 17-55 in 2010 

 

 

 

Note: EU27 is excluding DE. The figures report box-plots for the estimated coefficients from Step 5 over 25 repetitions of 

the concatenated analysis (100 repetitions for the EU27). The coefficients measure the increase in the odds of being 

employed in 2019 corresponding to a one standard deviation increase in the value of the index. The sample is restricted to 

55 years old in 2010 as these individuals would be 64 years old in 2019. 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

 

 



4.2. Effects on earnings 

Our second set of results concerns the effects of the digital transformation on gross and net earnings.  

As for employment outcomes, the effects of digital capital intensity and robot density on earnings 

can be measured only for those in employment, as they refer to changes happening at the level of the 

industry each worker was initially observed in. Table 3 shows the estimated coefficients of digital 

capital intensity and robot density for the model estimated on the EU-wide sample. The effects are 

generally small. Some slightly larger and positive effects can be detected only for the effects of digital 

capital intensity in the low education sample. They however point to a 2% ceteris paribus increase 

in gross earnings over a 10 year period, still a small effect corresponding to a rather large (one 

standard deviation) variation of the index. The country-level effects are generally small, and 

consistent with the limited effects identified at the EU-wide level.19 Hence, as in the case of 

employment, we do not find evidence of either a negative or positive effect of various types of 

digitalisation at sectoral level on individual earnings outcomes, for both net and gross earnings.  

 

Table 3 - Estimated coefficients for the effects of changes in digital capital intensity and robot density in 

the industry of employment in 2010 on (approximate) gross earnings growth between 2010 and 2019. 

Sample: EU27 (excluding Germany). 

 Digital capital intensity Robot density 

Sample Employed Employed 

Education Low medium high low medium high 

Mean effect 0.019 -0.001 -0.006 -0.0016 -0.0002 0.0002 

Std.dev. 0.001 0.000 0.000 0.0000 0.0000 0.0000 

Min 0.018 -0.002 -0.006 -0.0017 -0.0003 0.0001 

Max 0.021 0.000 -0.005 -0.0015 -0.0002 0.0002 

Note: The table reports summary statistics for the estimated coefficients from Step 5 over 100 repetitions of the 

concatenated analysis. The coefficients measure the approximate percentage change in gross yearly earnings (difference in 

inverse hyperbolic sine transformation) between 2010 and 2019 corresponding to a one standard deviation increase in the 

value of the index over the same period. 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

Table 4 shows the estimated coefficients for the effects of digital skills on gross earnings. We find a 

positive impact on gross earnings growth for those not in employment in the base year, but a negative 

effect for those in employment, although these effects are again rather small. The positive effect (for 

those not in employment) fades away with high education, while the negative effect (for those in 

employment) is stronger for low education. For the low educated, a (rather large) increase in digital 

skills by one standard deviation brings an increase in gross earnings over a 10-year period of only 

2% if starting as not employed and a similar decrease if starting as employed (Table 4). 

 

 

 

 
19 Details of the country-specific analysis are available on request. 
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Table 4 – Estimated coefficients for the effects of the 2010 endowment of digital skills on gross earnings 

growth between 2010 and 2019. Sample: EU27 (excluding Germany). 

Sample Not employed Employed 

Education Low medium high Low medium high 

Mean effect 0.019 0.024 0.003 -0.017 -0.007 -0.009 

Std.dev. 0.001 0.001 0.001 0.001 0.001 0.001 

Min 0.016 0.022 0.001 -0.020 -0.010 -0.012 

Max 0.022 0.028 0.007 -0.012 -0.004 -0.007 

Note: The table reports summary statistics for the estimated coefficients from Step 5 over 100 repetitions of the 

concatenated analysis. The coefficients measure the approximate percentage change in gross yearly earnings (difference in 

inverse hyperbolic sine transformation) between 2010 and 2019 corresponding to a one standard deviation increase in the 

value of the index. 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

Hence, on the one hand, in alignment with the results for employment outcomes and hypothesis H2, 

individuals who are not in employment appear to benefit from having a higher level of skills. This is 

consistent with SBTC: having skills that are complementary to the digital transformation is 

associated with superior labour market outcomes. Note that the positive effect of digital skills for 

those not in employment is a ceteris paribus effect that controls for the end-of-period (i.e. 2019) 

employment state, so it is not the case that those not in employment with higher digital skills 

experience higher earnings growth because they are more likely to find a job: rather, it is that these 

people, in addition to having a higher probability to find a job, end up in better paying jobs (with 

respect to similar individuals who also started out of job, found a job, but have less digital skills). 

Similarly to what we found with the probability of being in employment at the end of the period, the 

fact that the effect fades away for the not employed with high education points to a higher 

depreciation of more advanced digital skills. On the other hand, for individuals who are already in 

employment, (small) negative effects of digital skills on gross earnings growth are observed, 

especially for individuals with low education. One potential interpretation is that low-educated 

individuals with higher digital skills tend to work in jobs that are more structurally vulnerable to 

automation, or less protected (e.g. less unionised). Among those employed, the stronger negative 

effect of digital skills for the low-educated suggests that this group suffers more from digital 

transformation. However, given the overall low magnitude of the effects, these results should be 

interpreted cautiously. 

The effects for gross and net earnings not only go in the same direction, but are of comparable size 

(see Appendix D for the results on net earnings). This points to a limited role of policies, likely to be 

attributed to the small effects of digital transformation on earnings documented above.  

The country-level analysis shows a mixed picture, with no consistent pattern emerging. This is in 

line with the small size of the effects also documented in the pooled EU sample: country-specific 

estimates are rarely beyond plus or minus 10% for a large increase in  digital skills (one standard 

deviation) over a relatively long period (10 years). Given the small size of the effect, we caution 

against over-interpreting country differences. However, our country-specific results point to a larger 

number of countries where the estimated effects of digital skills on changes in gross earnings are 

positive rather than negative, for the sample of individuals not employed in 2010. Conversely, we 

find the opposite for the sample of those who are employed in 2010. This pattern is consistent with 

the results using the pooled sample.20 

 

 
20 Details of the country-specific analysis are available on request. 



4.3. Effects on inequality 

To evaluate the effects on inequality, we employ a counterfactual exercise where the sectoral-level 

indexes of digital transformation are kept constant at their 2010 level, and digital skills on the supply 

side are de-trended to mimick the loss of one decade of skills growth. We then compare the value 

associated with the baseline (observed values of the indexes of digital transformation) and the 

counterfactual (modified values). The baseline is therefore “with digital transformation active”, while 

the counterfactual is “with digital transformation paused”. Differences between the baseline and the 

counterfactual hence identify the estimated effect of a decade of digital transformation. 

Figure 3 displays the results for gross earnings inequality, in terms of the difference between the Gini 

coefficient in the baseline and that in the counterfactual. A similar exercise shows negligible effects 

on net earnings inequality and poverty. Hence, we find no evidence that digital transformation has 

negative impacts on inequality (hence supporting hypothesis H3ab against H3a). However, the 

quantitative exercise shown here cannot speak to whether labour market and social policy institutions 

– such as wage setting mechanisms – played a role in limiting the potential effects of the digital 

transformation on inequality.  

 

Figure 3 - Impact of digital transformation on gross income inequality (Gini coefficient), 2010-2019 

 

 

Source: Our 

computation on 

longitudinal EU-

SILC data 2010-

2019. 

 

5. Discussion 

Apart from the effects on employment, which support our “conveyor belt hypothesis”, little other 

effects are found. Direct effects of digital skills on gross earnings (beyond the effects already 

vehiculated by education and occupation) are positive for individuals who start out not in 

employment and negative for those employed in the base year, but in both cases, these effects are 

substantially very small in size. Indicators of digital transformation on the demand side have also 

little bearing on individual outcomes. Finally, no effects of digital transformation on inequality can 

be detected, according to our estimates. 
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There are several possible explanations for the overall limited effects found, in light of the ongoing 

concerns related to the digital revolution. First, our study uses nationally representative samples. The 

fact that, for the most part, we do not observe impacts of the digital transformation on employment 

and earnings does not imply that digitalisation has no effects on labour markets. Rather, as 

highlighted in the review of theory, the effects of digitalisation may go in different directions and 

could thus cancel each other out at an aggregate level. This neutralising effect, which posits that 

potential displacement effects21 of the digital transformation may be offset by countervailing 

mechanisms such as productivity effects22 or the creation of new tasks23, is prominently discussed in 

the literature (e.g. Acemoglu and Restrepo, 2019; Fossen and Sorgner, 2022) and serves as a plausible 

explanation of our results, especially when adopting a level of inquiry at the national level, as is done 

in this study. Moreover, the literature on robotics also points to a limited impact on employment and 

earnings in Europe, though these aggregate effects may hide differences across specific sectors or 

population groups (Graetz and Michaels, 2018; Dauth et al., 2021).Based on our research design and 

data, we have no information, and also no statistical power, to analyse what happens at lower zoom 

levels than the national one, and the data we use does not contain information on individual 

firms/plants, making it impossible to reconstruct trajectories following specific technological 

upgrades. Relatedly, a second explanation concerns the time horizon of the analysis, which extends 

over a full decade. During a longer period of time, affected individuals have the opportunity to move 

to other jobs, in other firms, occupations, sectors, areas. Our results might therefore point to an 

aggregate resilience of EU economies, compatible with localised and temporaneous adverse effects. 

Indeed, at national level and considered over longer periods of time, our findings suggest that 

negative effects of the digital transformation may be more attenuated than anticipated, pointing to 

the adaptive and resilient nature of labour markets in the long-run. 

A third explanation is that the degree and nature of the digital shock experienced during the 2010s in 

the EU was perhaps less pronounced than in other contexts (e.g. specific sectors in the U.S.) or time 

periods (e.g.1990 – 2010). This period has experienced relatively stable advancements in existing 

digital technologies,  as opposed to the emergence of new paradigms that dramatically disrupted 

labour markets. For instance, advancements in cloud computing, big data analytics and the mobile 

internet, significant digital developments of the decade, were largely evolutions from earlier 

technologies rather than revolutionary changes. Moreover, while these innovations had profound 

impacts on businesses – streamlining of operations and reduction of costs (cloud computing), shift 

in consumer behaviour and business models (mobile internet), data-driven decision-making (big data 

analytics) – they did not always carry with them direct employment effects, often times resulting in 

job evolution and the creation of new opportunities rather than large-scale labour disruptions. 

Relatedly, adopting a temporal perspective, one could posit that earlier periods, such as 1990 – 2010, 

witnessed significant innovations and foundational shifts in technology that more directly 

transformed labour markets. The internet revolution fundamentally transformed how industries 

operated, with profound effects across economies, including indirect effects (cheaper communication 

and connectivity) that could be argued to have further increased globalisation and outsourcing. This 

in contrast to the 2010s, where advancements were more about deepening and extending the impact 

of earlier innovations.  

 

21 Displacement effects refer to the ability of new technologies to perform tasks previously undertaken by humans, implying that certain 

jobs could be replaced by technology. 

22 Productivity effects refer to increases in the demand for labour in non-automated tasks, both in sectors undergoing automation and in 

sectors that are not affected. Productivity effects could occur through both a price-productivity and a scale-productivity effect. The 

former refers to technology leading to a compression in prices, which allows the industry to expand sales and take on more workers, 
while the latter states that lower aggregate prices may lead to an expansion in the local economy and associated spill-over effects 

whereby adjacent industries increase their demand for labour. 

23 The creation of new tasks through digitalisation may lead to employment and wage gains for individual workers. New tasks could be 

more complex versions of existing tasks or completely new activities, potentially complementing technology. Workers may have a 
comparative advantage relative to machines in these new tasks, directly leading to a reinstatement effect that counterbalances potential 

displacement. 



Furthermore, it is important to note that our study provides very limited bearings on the effects of 

A.I. and the impending new wave of transformation. This is largely because, during the 2010s, 

despite significant speculation about the potential impact of A.I., its real-world implementation 

across various industries remained tentative and experimental. However, with the recent rapid 

expansion of applied A.I. in various sectors – including large language models, autonomous vehicles, 

and advanced intelligent robotics – the 2020s may present a different scenario. Nevertheless, it will 

remain important to not let rhetoric dominate over reason, since it is interesting to note that the 

narrative around the digital revolution might have run faster than reality in the 2010s. While early 

signs may suggest the opposite, this could also possibly hold true for the next stage of the digital 

revolution.  

Fourth, it is important to note that our approach has certain limitations which might also explain the 

limited results found. Measuring digital transformation over time proves difficult, and our indexes 

might miss important aspects of the phenomenon. Moreover, adoption by domestic firms of the new 

production processes might reduce the pressure from international competition, hence preserving 

jobs. Finally, and on a more technical note, probabilistic imputation of the indexes of digital 

transformation introduces noise in the estimates, which is further increased by our concatenated 

analysis (although results for the sub-periods, not involving simulations, broadly confirm the picture 

depicted here). Both steps are required to overcome the limitations of the data, but there are limits to 

what they can achieve. Better data – specifically in the form of a longer longitudinal component of 

the SILC and inclusion of additional variables on work characteristics and human capital – would be 

a welcomed development.  

While, for the reasons discussed above, our analysis largely indicates a relatively modest impact of 

the digital transformation on the labor market during the 2010s, the results do suggest an important 

finding: digital skills are crucial to finding a job, yet less so for retaining one. What we denote the 

“conveyor belt hypothesis” stipulates that those in employment (on the belt) will be accompanied in 

better navigating the digital transformation, acquiring necessary skills while on the job. However, 

for individuals out of a job, and especially for ones with low and medium levels of education, digital 

skills significantly impact their employability. In other words, those unemployed risk not making the 

jump onto the conveyor belt and being left behind. From a policy perspective, this underscores the 

importance of up- and re-skilling initiatives, especially for older generations. While younger cohorts 

tend to enter the labour market with higher levels of digital skills, older individuals who are or 

become unemployed often have less developed digital literacy and are at a disadvantage24. As such, 

adult learning is an important consideration in this context. Effective life-long learning opportunities 

that equip adults with digital skills are a key policy lever to enable them to better participate in the 

labour market. Such ambitions are reflected in the European Pillar of Social Rights Action Plan, 

which aim for at least 60% of adult participation in annual training by 2030. While progress is being 

made – 43.7% in 2016 to 46.6% in 202225 – more will be required to reach this important policy 

objective and thereby help mitigate further increases in job displacement, poverty and income 

inequality that may arise from future digital develpoments. 

  

 
24 Individuals with basic or above basic overall digital skills by age cohort, EU-27 (Eurostat, 2023 - isoc_sk_dskl_i21):  

16 – 24-year-olds: 70% 

25 – 34-year-olds: 70%  

35 – 44-year-olds: 65%  
45 – 54-year-olds: 57%  

55 – 64-year-olds: 44%  

65 – 74-year-olds: 28% 

25 Eurostat: Participation rate in education and training by sex (trng_aes_100) 

https://ec.europa.eu/eurostat/databrowser/view/trng_aes_100/default/table?lang=en&category=educ.educ_part.trng.trng_aes_12m.tr

ng_aes_12m0 
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Appendixes 

Appendix A. Modelling results and descriptive statistics for the 

measures of digital transformation 

 
Figure A1: Digital capital intensity by country, 1995-2019 

 

Note: Authors’ elaboration based on data from Bontadini et al. (2023) 

 

Figure A2: Average robot density by country, 2005-2019 

 

Note: Authors’ elaboration based on data from IFR (2023), EU excluding Germany 
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Figure A3: Average robot density by industry, 2005-2019 

 

Note: Authors’ elaboration based on data from IFR (2023), EU excluding Germany 

 

  



Table A1: Results of the Item Response Theory Model To Predict Levels of Digital Skill 

Variables Coeff. Std. err. P>|z| Conf. int.  

Copied or moved files into a folder         

Discrimination 3.51 0.03 0.00 3.45 3.56 

Difficulty -0.59 0.00 0.00 -0.60 -0.58 

Saved files on Internet storage space         

Discrimination 1.23 0.01 0.00 1.21 1.24 

Difficulty 0.83 0.01 0.00 0.82 0.85 

Obtained information from public authorities/services' websites     

Discrimination 1.05 0.01 0.00 1.03 1.07 

Difficulty -0.11 0.01 0.00 -0.12 -0.10 

Finding information about goods or services;       

Discrimination 1.15 0.01 0.00 1.14 1.17 

Difficulty -1.45 0.01 0.00 -1.47 -1.43 

Seeking health-related information.         

Discrimination 0.64 0.01 0.00 0.63 0.65 

Difficulty -0.68 0.01 0.00 -0.70 -0.66 

Sending/receiving emails           

Discrimination 1.80 0.02 0.00 1.77 1.83 

Difficulty -1.56 0.01 0.00 -1.58 -1.55 

Participating in social networks         

Discrimination 0.73 0.01 0.00 0.72 0.75 

Difficulty -0.59 0.01 0.00 -0.61 -0.58 

Telephoning/video calls over the internet       

Discrimination 0.64 0.01 0.00 0.63 0.66 

Difficulty 0.47 0.01 0.00 0.45 0.49 

Uploading self-created content to any website to be shared     

Discrimination 0.86 0.01 0.00 0.84 0.87 

Difficulty 0.97 0.01 0.00 0.95 0.98 

Transferring files between computers or other devices     

Discrimination 2.62 0.02 0.00 2.59 2.65 

Difficulty -0.53 0.00 0.00 -0.53 -0.52 

Installing software and applications (apps)       

Discrimination 2.39 0.01 0.00 2.36 2.42 

Difficulty -0.25 0.00 0.00 -0.26 -0.24 

Changing settings of any software         

Discrimination 2.02 0.01 0.00 2.00 2.05 

Difficulty 0.55 0.00 0.00 0.54 0.56 

Online purchases (in the last 12 months)       

Discrimination 1.18 0.01 0.00 1.17 1.20 

Difficulty -0.29 0.01 0.00 -0.30 -0.28 

Selling online           

Discrimination 0.71 0.01 0.00 0.70 0.73 

Difficulty 1.77 0.02 0.00 1.73 1.80 

Using online learning resources         

Discrimination 1.21 0.01 0.00 1.19 1.23 

Difficulty 1.56 0.01 0.00 1.54 1.58 

Internet banking           
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Discrimination 1.06 0.01 0.00 1.04 1.07 

Difficulty -0.56 0.01 0.00 -0.57 -0.55 

Used word processing software         

Discrimination 3.34 0.02 0.00 3.29 3.38 

Difficulty -0.38 0.00 0.00 -0.38 -0.37 

Used spreadsheet software           

Discrimination 2.86 0.02 0.00 2.82 2.90 

Difficulty 0.16 0.00 0.00 0.15 0.17 

Used software to edit photos, videos or audio files       

Discrimination 2.08 0.01 0.00 2.06 2.10 

Difficulty 0.28 0.00 0.00 0.27 0.28 

Created presentation or document integrating text, pictures, tables or charts   

Discrimination 2.71 0.02 0.00 2.67 2.74 

Difficulty 0.27 0.00 0.00 0.26 0.27 

Used advanced functions of spreadsheet to organise and analyse data 

Discrimination 2.82 0.02 0.00 2.78 2.87 

Difficulty 0.62 0.00 0.00 0.62 0.63 

Have written a code in a programming language       

Discrimination 1.85 0.02 0.00 1.81 1.88 

Difficulty 2.07 0.01 0.00 2.04 2.09 

 
Note: Number of observations = 587,749. Models weighted for population size.   
 

 

 

  



Table A2: Descriptive statistics on the estimated level of digital skill, pooled sample 

Category Level of digital skill 

Overall 2 
Gender  

Men  2.1 
Women 1.9 

Age  

16-24 2.4 
25-34 2.32 

35-44 2.07 
45-54 1.86 

55-64 1.61 
65-74 1.41 

Education  

At most lower secondary 1.55 
Upper secondary and post-secondary non-tertiary 1.89 

Tertiary 2.5 
Lower than tertiary  

Employment Status  

Employed 2.11 
Unemployed 1.73 

Student 2.54 
Other not in labour force 1.43 

Occupation  

Non-manual workers 2.31 
Manual workers 1.55 

Country  

AT 2.17 

BE 2 
BG 1.48 

CY 1.72 

CZ 1.89 
DE 2.2 

DK 2.39 
EE 2.12 

EL 1.9 

ES 1.97 
FI 2.35 

FR 1.94 
HR 2.16 

HU 1.96 
IE 1.84 

IT 1.73 

LT 2.05 
LU 2.32 

LV 1.83 
MT 2.03 

NL 2.41 

PL 1.71 
PT 2.04 

RO 1.59 
SE 2.27 

SI 1.99 
SK 1.91 
 
Note: Data shown for they pooled sample including the years 2015, 2016, 2017 and 2019.   
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Table A3: Results of OLS regression on digital skill, 2015-2019, respondents 16-74 

Y = Digital skill level Coeff Std.dev. 
Female -0.265*** -0.00412 

Age (ref = 16-24):  
25-34 -0.149*** -0.0106 

35-44 -0.337*** -0.0108 

45-54 -0.529*** -0.0106 

55-64 -0.703*** -0.011 

65-74 -0.781*** -0.0128 

Education (ref = At most lower secondary): 

Upper secondary and post-secondary non-
tertiary 

0.408*** -0.00608 

Tertiary 0.913*** -0.00679 

Employment status (ref = Employed manual): 

Employed non-manual 0.525*** -0.00652 

Unemployed 0.185*** -0.00972 

Student 0.788*** -0.0122 

Other not in labour force 0.128*** -0.00827 

Year 0.0132*** -0.00135 

Country (ref = AT):  
BE -0.101*** -0.0116 

BG -0.697*** -0.0106 

CY -0.521*** -0.0118 

CZ -0.166*** -0.0111 

DE 0.147*** -0.00983 

DK 0.340*** -0.0125 

EE -0.0269** -0.0116 

EL -0.275*** -0.0119 

ES -0.0903*** -0.0108 

FI 0.279*** -0.013 

FR -0.115*** -0.0106 

HR 0.0984*** -0.0166 

HU -0.117*** -0.0119 

IE -0.312*** -0.013 

IT -0.264*** -0.00987 

LT -0.177*** -0.0118 

LU 0.154*** -0.0155 

LV -0.307*** -0.0105 

MT -0.0199 -0.0178 

NL 0.346*** -0.0113 

PL -0.452*** -0.0106 

PT 0.0304** -0.0124 

RO -0.504*** -0.00994 

SE 0.159*** -0.0181 

SI -0.109*** -0.0157 

SK -0.255*** -0.0122 

Constant -24.95*** -2.723 

Observations 583,093  
R-squared 0.356  

Note: *** p<0.01, ** p<0.05, * p<0.1. Model is weighted by population size.  



Table A4: Matching rate between longitudinal and cross-sectional SILC 

 Wave 

Country 2013 2016 2019 

AT 91.5% 96.5% 96.5% 

BE 87.1% 97.2% 96.1% 

BG 95.7% 88.9% 94.2% 

CY 69.2% 96.4% 95.9% 

CZ 96.9% 96.5% 95.9% 

DK 92.4% 97.9% 97.0% 

EE 96.4% 95.9% 95.0% 

EL 87.1% 97.2% 96.1% 

ES 64.1% 94.3% 94.4% 

FI 97.3% 97.1% 97.7% 

FR 91.5% 96.5% 96.5% 

HR 96.1% 96.1% 94.8% 

HU 87.0% 95.7% 95.1% 

IE 92.4% 92.3% 96.1% 

IT 87.3% 87.9% 89.6% 

LT 95.8% 95.1% 95.4% 

LU 97.6% 92.8% 97.9% 

LV 94.6% 93.8% 94.9% 

MT 31.0% 28.7% 13.0% 

NL 97.6% 97.7% 95.7% 

PL 96.9% 96.5% 95.9% 

PT 88.4% 95.4% 94.3% 

RO 93.5% 95.8% 96.0% 

SE 96.8% 96.7% 96.7% 

SI 96.8% 88.3% 96.6% 

SK 95.4% 97.1% 99.8% 
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Appendix B. Descriptive statistics for the EU-SILC estimation 

samples 

Table B1: Estimation sample size 

  Wave   

Country 2013 2016 2019 Total 

AT 2,323 1,986 2,149 6,458 

BE 2,029 2,292 3,540 7,861 

BG 2,626 6,398 6,375 15,399 

CY 2,872 1,748 2,121 6,741 

CZ 4,311 3,285 3,657 11,253 

DK 1,480 1,987 1,650 5,117 

EE 2,299 2,474 2,565 7,338 

EL 2,365 4,152 9,465 15,982 

ES 4,974 4,909 4,425 14,308 

FI 4,254 4,025 3,596 11,875 

FR 9,665 9,405 8,551 27,621 

HR 2,318 2,026 3,773 8,117 

HU 3,595 3,042 2,685 9,322 

IE 750 1,298 964 3,012 

IT 5,616 6,804 8,634 21,054 

LT 2,700 1,960 2,039 6,699 

LU 1,515 1,375 1,681 4,571 

LV 2,611 2,207 2,223 7,041 

MT 2,118 2,155 1,852 6,125 

NL 3,535 3,373 4,623 11,531 

PL 6,323 5,909 5,036 17,268 

PT 2,699 3,253 6,563 12,515 

RO 3,933 3,708 3,606 11,247 

SE 1,972 1,597 1,660 5,229 

SI 3,919 3,627 3,696 11,242 

SK 2,929 2,992 6,681 12,602 

Total 85,731 87,987 103,810 277,528 

 
 

  



Table B2: Descriptive statistics, 2010-2013 wave, year 2013 

 
Wave:     2010-2013 

 
Year 2010 

Variable Obs Mean Std.Dev Min Max 

age 2,323 52.00 16.66 20 81 

region_AT1 2,323 0.42 0.49 0 1 

region_AT2 2,323 0.20 0.40 0 1 

region_AT3 2,323 0.38 0.48 0 1 

eduL 2,323 0.18 0.38 0 1 

eduM 2,323 0.62 0.48 0 1 

eduH 2,323 0.20 0.40 0 1 

urban_1 0 
    

urban_2 0 
    

urban_3 0 
    

employment rate 2,305 0.54 0.50 0 1 

isco08_1 0 
    

isco08_2 0 
    

isco08_3 0 
    

isco08_4 0 
    

isco08_5 0 
    

isco08_6 0 
    

isco08_7 0 
    

isco08_8 0 
    

isco08_9 0 
    

isco08_10 0 
    

gross earnings 2,323 21133 32633 0 623682 

digital skills 1,979 1.82 0.55 0.73 3.40 

robot density 2,323 2.04 6.70 0.00 24.31 

digital K intensity 1,129 0.02 0.03 0.00 0.12 

Source: Our computation on longitudinal EU-SILC data 2010-2013. 
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Table B3: Descriptive statistics, 2013-2016 wave, year 2013 

 
Wave: 2013-2016 

 
Year 2013 

Variable Obs. Mean Std.Dev Min Max 

age 1,986 50.01 16.99 17 78 

region_AT1 1,986 0.46 0.50 0 1 

region_AT2 1,986 0.19 0.39 0 1 

region_AT3 1,986 0.35 0.48 0 1 

eduL 1,986 0.20 0.40 0 1 

eduM 1,986 0.61 0.49 0 1 

eduH 1,986 0.19 0.39 0 1 

urban_1 1,986 0.28 0.45 0 1 

urban_2 1,986 0.32 0.47 0 1 

urban_3 1,986 0.40 0.49 0 1 

employment rate 1,986 0.54 0.50 0 1 

isco08_1 1,986 0.06 0.24 0 1 

isco08_2 1,986 0.06 0.24 0 1 

isco08_3 1,986 0.16 0.36 0 1 

isco08_4 1,986 0.17 0.38 0 1 

isco08_5 1,986 0.09 0.29 0 1 

isco08_6 1,986 0.16 0.37 0 1 

isco08_7 1,986 0.04 0.21 0 1 

isco08_8 1,986 0.12 0.32 0 1 

isco08_9 1,986 0.06 0.23 0 1 

isco08_10 1,986 0.08 0.27 0 1 

gross earnings 1,986 19179 25816 0 215307 

digital skills 1,777 1.83 0.54 0.73 3.14 

robot density 1,986 2.39 7.19 0.00 24.31 

digital K intensity 1,016 0.02 0.03 0.00 0.12 

Source: Our computation on longitudinal EU-SILC data 2013-2016. 

 

  



Table B4: Descriptive statistics, 2016-2019 wave, year 2016 

 
Wave:  2016-2019 

 
Year 2016 

Variable Obs Mean Std.Dev Min Max 

age 2,149 49.91 16.90 17 78 

region_AT1 2,149 0.45 0.50 0 1 

region_AT2 2,149 0.20 0.40 0 1 

region_AT3 2,149 0.35 0.48 0 1 

eduL 2,149 0.16 0.37 0 1 

eduM 2,149 0.52 0.50 0 1 

eduH 2,149 0.32 0.47 0 1 

urban_1 2,149 0.27 0.44 0 1 

urban_2 2,149 0.28 0.45 0 1 

urban_3 2,149 0.45 0.50 0 1 

employment rate 2,149 0.58 0.49 0 1 

isco08_1 2,149 0.08 0.27 0 1 

isco08_2 2,149 0.06 0.23 0 1 

isco08_3 2,149 0.16 0.37 0 1 

isco08_4 2,149 0.17 0.37 0 1 

isco08_5 2,149 0.10 0.30 0 1 

isco08_6 2,149 0.15 0.36 0 1 

isco08_7 2,149 0.04 0.20 0 1 

isco08_8 2,149 0.12 0.33 0 1 

isco08_9 2,149 0.05 0.22 0 1 

isco08_10 2,149 0.07 0.26 0 1 

gross earnings 2,149 23263 33290 0 450644 

digital skills 1,911 1.98 0.57 0.77 3.44 

robot density 2,149 3.53 10.16 0.00 33.09 

digital K intensity 1,187 0.03 0.03 0.00 0.15 

Source: Our computation on longitudinal EU-SILC data 2016-2019. 
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Appendix C. Illustrative econometric results and validation for one 

repetition of the concatenated analysis, pooled sample. 

Step 1: Estimation of 2019 outcomes on 2016-2019 wave 

The first step of the concatenated analysis involves estimating employment outcomes and earnings 

between 2016 and 2019, that is on those individuals that are observed in all years 2016-2019.26 

Employment is measured as a dichotomous variable (either employed or not employed), while we 

analyse both gross and net income.27 

We first estimate employment outcomes for the whole working age population, without controlling 

for the indicators of digital transformation on the demand side (i.e. demand of digital skills).28 This 

allows us to predict employment outcomes in 2019 for all individuals observed in 2016, irrespective 

of whether they are employed or not employed in 2016. We then run a second model for those 

observed as employed in 2016, which allows us to include the two indicators of digital transformation 

on the demand side (digital capital intensity and robot density, at the industry level). We use these 

estimates to replace the prediction of employment outcomes for those observed as employed in 

2016.29 Tables C1 and C2 report regression results for the two samples. 

Considering the whole EU population, we observe a lower employment prospect for women, and 

especially those with young children. Poor health (that is, a condition limiting daily activities) is a 

strong predictor of employment three years later. There is a clear gradient for gross income, with 

higher income quintiles leading to a higher probability of being employed at the end of the period. 

Digital skills are found to have a positive effect, with little gradient by education.  

Predictions for individuals observed as employed in the initial period are then replaced using a model 

estimated exclusively on this sample, also controlling for indicators of digital transformation on the 

demand side (Table C2). 

  

 
26 As this step does not rely on previous simulations, it leads to identical results in all Montecarlo runs. 

27 Employment state is based on SILC variable ‘rb210’ (self-defined activity status), distinguishing between ‘employed’, ‘unemployed’, 
‘retired’ and ‘other economically inactive’. Income is based on SILC variables ‘hy010’ (total household gross income) and ‘hy020’ (total 

disposable household income)._ 

28 The youngest age observed in SILC is 17. We restrict age to be below 65 in 2019, so that the sample is between 17 and 61 (inclusive) 

in 2016, or between 21 and 64 (inclusive) in 2019. 

29 To be noted, the first step of estimating employment outcomes could have been performed on those observed as not employed in the 

initial period only (as we do for the earnings models – see below), given that we eventually use it only to predict employment outcomes 
for this group. However, running our model on this group only reduces sample size and variability, leading to non-convergence of the 

estimates for a number of countries. 



Table C1: Estimation results for employment equation (logistic regression). Output: Observed 

employment in 2019. Sample: EU27 (excluding Germany) 2016-2019, working age population 

Logistic regression 
 

  

  Number of 

observations 

64,980 

Outcome: Observed employment in 2019 
 

Prob > chi2 0.000 
  

Pseudo R2 0.413 
 

Coef. Std. Err.  

Employed (2016) 2.852*** 0.049  

Age 0.325*** 0.014  

Age squared -0.004*** 0.000  

Sex: Female (Ref: Male) -0.423*** 0.046  

Health: Strongly limiting (Ref: n.a.) -1.346*** 0.123  

Health: Limiting (Ref: n.a.) -0.541*** 0.101  

Health: Not limiting (Ref: n.a.) -0.168* 0.089  

Education: Medium (Ref: Low) 0.013 0.066  

Education: High (Ref: Low) 0.182 0.141  

Household size 0.001 0.019  

Living in consensual union, legal basis (Ref: n.a.) -0.932* 0.509  

Living in consensual union, no legal basis (Ref: n.a.) -0.829 0.512  

Not living in consensual union (Ref: n.a.) -0.767 0.507  

No. children 0-3 0.287** 0.111  

- interaction with Sex: Female -0.388*** 0.134  

No. children 4-6 0.082 0.110  

- interaction with Sex: Female -0.419*** 0.132  

Population density: High (Ref: n.a.) -0.226 0.193  

Population density: Intermediate (Ref: n.a.) -0.144 0.193  

Population density: Low (Ref: n.a.) -0.051 0.192  

Gross income quintile: 2 (Ref: 1) 0.187*** 0.068  

Gross income quintile: 3 (Ref: 1) 0.231*** 0.067  

Gross income quintile: 4 (Ref: 1) 0.345*** 0.069  

Gross income quintile: 5 (Ref: 1) 0.244*** 0.075  

Digital skills 0.335*** 0.067  

- interaction with Education: Medium -0.061 0.052  

- interaction with Education: High 0.055 0.090  

Regional dummies (NUTS 2) Yes 
  

Note: Occupation grouped as follows: 1 = armed forces & managers; 2 = professionals; 3 = Technicians and associate 

professionals; 4 = Clerks; 5 = Service workers and shop and market sales workers; 6 = Skilled agricultural and fishery 

workers; 7 = Craft and related trades workers; 8 = Plant and machine operators and assemblers; 9 = Elementary occupations. 

P-values below .1 in bold. 

Key: * = p < .1, ** = p < .05, *** = p < .01 

Source: Our computation on longitudinal EU-SILC data 2016-2019. 
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Table C2: Estimation results for employment equation (logistic regression). Output: Observed 

employment in 2019. Sample: EU27 (excluding Germany) 2016-2019, population observed as employed 

in 2016. 

Logistic regression 
 

  

  Number of observations 43,184 

Outcome: Observed employment in 2019 
 

Prob > chi2 0.000 
  

Pseudo R2 0.157 
 

Coef. Std. Err.  

Employed (2016) 0.000 (omitted)  

Occupation: 1 (ref: n.a.) 2.631** 1.155  

Occupation: 2 (ref: n.a.) 2.694** 1.148  

Occupation: 3 (ref: n.a.) 2.543** 1.149  

Occupation: 4 (ref: n.a.) 2.451** 1.150  

Occupation: 5 (ref: n.a.) 2.400** 1.150  

Occupation: 6 (ref: n.a.) 2.325** 1.159  

Occupation: 7 (ref: n.a.) 2.440** 1.139  

Occupation: 8 (ref: n.a.) 2.267** 1.140  

Occupation: 9 (ref: n.a.) 2.248** 1.139  

Age 0.514*** 0.023  

Age squared -0.006*** 0.000  

Sex: Female (Ref: Male) -0.665*** 0.148  

Living in consensual union, legal basis (Ref: n.a.) -0.895*** 0.197  

Living in consensual union, no legal basis (Ref: n.a.) -0.424*** 0.137  

Not living in consensual union (Ref: n.a.) -0.067 0.123  

Education: Medium (Ref: Low) 0.282 0.229  

Education: High (Ref: Low) 0.817* 0.487  

Household size 0.022 0.029  

Living in consensual union, legal basis -1.409 0.932  

Living in consensual union, no legal basis -1.409 0.935  

Not living in consensual union -1.096 0.931  

No. children 0-3 0.175 0.148  

- interaction with Sex: Female -0.590*** 0.175  

No. children 4-6 -0.061 0.157  

- interaction with Sex: Female -0.282 0.193  

Population density: High (Ref: n.a.) -0.536** 0.250  

Population density: Intermediate (Ref: n.a.) -0.581** 0.249  

Population density: Low (Ref: n.a.) -0.362 0.247  

Gross income quintile: 2 (Ref: 1) 0.287*** 0.107  

Gross income quintile: 3 (Ref: 1) 0.311 0.107  

Gross income quintile: 4 (Ref: 1) 0.609 0.112  

Gross income quintile: 5 (Ref: 1) 0.431 0.116  

Digital skills -0.113 0.329  

- interaction with Education: Medium 0.160 0.117  

- interaction with Education: High -0.037 0.164  

Changes in digital capital intensity -0.366* 0.195  

- interaction with Education: Medium 0.537** 0.231  

- interaction with Education: High 0.565** 0.249  

Changes in robot density -0.012 0.011  

- interaction with Education: Medium 0.010 0.011  



- interaction with Education: High 0.002 0.013  

Regional dummies (NUTS 2) Yes 
  

Note: Occupation grouped as follows: 1 = armed forces & managers; 2 = professionals; 3 = Technicians and associate 

professionals; 4 = Clerks; 5 = Service workers and shop and market sales workers; 6 = Skilled agricultural and fishery 

workers; 7 = Craft and related trades workers; 8 = Plant and machine operators and assemblers; 9 = Elementary occupations. 

P-values below .1 in bold. 

Key: * = p < .1, ** = p < .05, *** = p < .01 

Source: Our computation on longitudinal EU-SILC data 2016-2019. 

 

In this sample, restricted to employed individuals, the supply of digital skills is no longer significant. 

On the demand side, changes in digital capital intensity in the original sector of work are found to be 

negatively correlated with the probability of remaining employed at the end of the period, especially 

for those with low education. The suggestion from this analysis on the 2016-2019 period is that 

digital skills are important for finding a job, less so for retaining it, while industry evolution (that is, 

the indicators of digital transformation on the demand side) plays a bigger role in determining 

individual outcomes for those employed.  

Overall, the fit of the two models combined (that for the whole population and that for employed 

workers only) is good: the predicted employment rate in 2019, in the age group considered, is 70.1%, 

against an observed employment rate of 70.4%. 

We then estimate, on the 2016-2019 sample, a wage equation for gross and net earnings, where the 

outcome is the observed percentage changes in earnings between 2016 and 2019 (see eq. 2).30 

The models are estimated separately for the sample of not employed in 2016 and for the sample of 

employed in 2016. In the latter, as in the specification for employment state, we also control for 

indicators of digital transformation on the demand side. Regression results for gross earnings are 

reported in Tables C3 and C4, for the two samples respectively. 

 

  

 
30 As discussed in the text, percentage changes in earnings are approximated by the inverse hyperbolic sine transformation.  
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Table C3: Estimation results for gross earnings (linear regression). Output: Changes in transformed 

gross yearly earnings (inverse hyperbolic syne transformation) between 2016 and 2019. Sample: 

population observed as not employed in 2016. 

Linear regression 
 

  

  Number of 

observations 

21,773 

Outcome: Gross earnings growth 2016-2019 
 

Prob > F 0 
  

R2 0.124 
 

Coef. Std. Err.  

Employed (2019) 0.327*** 0.035  

Employed (2016) 0.000 (omitted)  

Age 0.003 0.013  

Age squared 0.000 0.000  

Sex: Female (Ref: Male) 0.068* 0.040  

Health: Strongly limiting (Ref: n.a.) -0.402*** 0.101  

Health: Limiting (Ref: n.a.) -0.419*** 0.117  

Health: Not limiting (Ref: n.a.) -0.353*** 0.097  

Education: Medium (Ref: Low) -0.080 0.059  

Education: High (Ref: Low) -0.155 0.127  

Household size 0.037*** 0.014  

Living in consensual union, legal basis (Ref: n.a.) 0.198 0.238  

Living in consensual union, no legal basis (Ref: n.a.) 0.028 0.245  

Not living in consensual union (Ref: n.a.) -0.044 0.233  

No. children 0-3 0.061 0.177  

- interaction with Sex: Female -0.132 0.187  

No. children 4-6 -0.187** 0.081  

- interaction with Sex: Female 0.103 0.089  

Population density: High (Ref: n.a.) 0.380** 0.163  

Population density: Intermediate (Ref: n.a.) 0.344** 0.164  

Population density: Low (Ref: n.a.) 0.370** 0.163  

Gross income quintile: 2 (Ref: 1) -0.749*** 0.060  

Gross income quintile: 3 (Ref: 1) -0.855*** 0.059  

Gross income quintile: 4 (Ref: 1) -0.936*** 0.063  

Gross income quintile: 5 (Ref: 1) -1.119*** 0.065  

Digital skills 0.180*** 0.066  

- interaction with Education: Medium -0.047 0.035  

- interaction with Education: High 0.030 0.083  

Regional dummies (NUTS 2) Yes 
  

Note: Occupation grouped as follows: 1 = armed forces & managers; 2 = professionals; 3 = Technicians and associate 

professionals; 4 = Clerks; 5 = Service workers and shop and market sales workers; 6 = Skilled agricultural and fishery 

workers; 7 = Craft and related trades workers; 8 = Plant and machine operators and assemblers; 9 = Elementary occupations. 

P-values below .1 in bold. 

Key: * = p < .1, ** = p < .05, *** = p < .01 

Source: Our computation on longitudinal EU-SILC data 2016-2019. 

 
  



Table C4: Estimation results for gross earnings (linear regression). Output: Changes in transformed 

gross yearly earnings (inverse hyperbolic syne transformation) between 2016 and 2019.  Sample: 

population observed as employed in 2016. 

Linear regression    

  Number of 

observations 

43,186 

Outcome: Gross earnings growth 2016-2019 
 

Prob > F 0.000 
  

R2 0.116 
 

Coef. Std. Err.  

Employed (2019) 0.180301*** 0.022218  

Employed (2016) 0 (omitted)  

Occupation: 1 (ref: n.a.) 0.067626 0.155881  

Occupation: 2 (ref: n.a.) 0.067125 0.154787  

Occupation: 3 (ref: n.a.) 0.021926 0.155139  

Occupation: 4 (ref: n.a.) 0.007701 0.155496  

Occupation: 5 (ref: n.a.) -0.02651 0.155667  

Occupation: 6 (ref: n.a.) -0.14592 0.157869  

Occupation: 7 (ref: n.a.) -0.08526 0.1536  

Occupation: 8 (ref: n.a.) -0.05001 0.153428  

Occupation: 9 (ref: n.a.) -0.10135 0.154107  

Age -0.01397*** 0.00424  

Age squared 0.000124** 4.87E-05  

Sex: Female (Ref: Male) -0.0415* 0.021428  

Living in consensual union, legal basis (Ref: n.a.) -0.08341** 0.037662  

Living in consensual union, no legal basis (Ref: n.a.) -0.09354*** 0.025115  

Not living in consensual union (Ref: n.a.) -0.06292*** 0.022138  

Education: Medium (Ref: Low) 0.097669** 0.037892  

Education: High (Ref: Low) 0.123823 0.075685  

Household size 0.047008*** 0.004685  

Living in consensual union, legal basis -0.02565 0.077111  

Living in consensual union, no legal basis -0.07469 0.07798  

Not living in consensual union -0.12902* 0.077423  

No. children 0-3 -0.04017*** 0.011644  

- interaction with Sex: Female 0.015066 0.01532  

No. children 4-6 -0.04465*** 0.015579  

- interaction with Sex: Female -0.00319 0.022921  

Population density: High (Ref: n.a.) -0.01486 0.034872  

Population density: Intermediate (Ref: n.a.) -0.02324 0.035752  

Population density: Low (Ref: n.a.) -0.01737 0.035538  

Gross income quintile: 2 (Ref: 1) -0.41954*** 0.032656  

Gross income quintile: 3 (Ref: 1) -0.52043*** 0.031253  

Gross income quintile: 4 (Ref: 1) -0.61107*** 0.032134  

Gross income quintile: 5 (Ref: 1) -0.77371*** 0.033557  

Digital skills -0.07917 0.05279  

- interaction with Education: Medium 0.035267 0.027934  

- interaction with Education: High 0.068084* 0.035952  

Changes in digital capital intensity 0.025106 0.054982  

- interaction with Education: Medium -0.02705 0.057724  

- interaction with Education: High -0.02203 0.058441  

Changes in robot density -0.00103 0.002244  

- interaction with Education: Medium 0.001282 0.002295  
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- interaction with Education: High 0.000863 0.002344  

Regional dummies (NUTS 2) Yes 
  

Note: Occupation grouped as follows: 1 = armed forces & managers; 2 = professionals; 3 = Technicians and associate 

professionals; 4 = Clerks; 5 = Service workers and shop and market sales workers; 6 = Skilled agricultural and fishery 

workers; 7 = Craft and related trades workers; 8 = Plant and machine operators and assemblers; 9 = Elementary occupations. 

P-values below .1 in bold. 

Key: * = p < .1, ** = p < .05, *** = p < .01 

Source: Our computation on longitudinal EU-SILC data 2016-2019. 

 

After controlling for the employment state in the end period, few variables are significant. Among 

those, digital skills for individuals with high education are positively associated to earnings gains, 

if not employed in 2016, but no association is detected for those employed. At the EU level, 

indicators of demand for digital skills (changes in digital capital intensity and robot density) have 

little bearing on changes in earnings. To validate the model, we compare the observed and 

predicted distribution of earnings (Figure C1). 

 

Figure C1: Step 1 - Gross earnings fit for 2019, based on 2016 characteristics. EU27 2016-2019 sample 

 

Gray: observed distribution. Red: estimated distribution. 2016-2019 sample aged between 17 and 61 in 2016. 

Source: Our computation on longitudinal EU-SILC data 2016-2019. 

 

The mean of predicted yearly gross earnings is EUR 41,974, against EUR 44,966 for observed 

earnings, in the sample; the estimated median is EUR 31,414, against EUR 30,510 for the observed 

median.   

Regression results for net earnings are reported in Tables C5 and C6, for the two samples 

respectively. The explanatory power of the specification for net earnings (as measured by the R2) is 

lower than for gross earnigns, as expected, given that the operation of the welfare state is explicitly 

aimed at attenuating the effects of individual characteristics (and shocks) on outcomes. The results 

obtained for gross earnings are, however, broadly confirmed also for net earnings, with the initial 



level of digitals skills having a positive effect on earning growth for those not in employment in the 

initial period, but not for those initially observed as employed. 

 

Table C5: Estimation results for net earnings (linear regression). Output: Changes in transformed net 

yearly earnings (inverse hyperbolic syne transformation) between 2016 and 2019. Sample: population 

observed as not employed in 2016. 

Linear regression    

  
Number of 

observations 
21,783 

Outcome: Net earnings growth 2016-2019  Prob > F 0 

  R2 0.091 

 Coef. Std. Err.  

Employed (2019) 0.337005*** 0.0425864  

Employed (2016) 0 (omitted)  

Age 0.003 0.017  

Age squared 0.000 0.000  

Sex: Female (Ref: Male) 0.067 0.054  

Health: Strongly limiting (Ref: n.a.) -0.444*** 0.116  

Health: Limiting (Ref: n.a.) -0.475*** 0.126  

Health: Not limiting (Ref: n.a.) -0.429*** 0.108  

Education: Medium (Ref: Low) -0.107 0.084  

Education: High (Ref: Low) -0.114 0.201  

Household size 0.034* 0.019  

Living in consensual union, legal basis (Ref: n.a.) 0.347 0.229  

Living in consensual union, no legal basis (Ref: n.a.) 0.038 0.245  

Not living in consensual union (Ref: n.a.) 0.121 0.223  

No. children 0-3 0.411 0.393  

- interaction with Sex: Female -0.347 0.413  

No. children 4-6 -0.293** 0.133  

- interaction with Sex: Female 0.187 0.144  

Population density: High (Ref: n.a.) 0.219* 0.114  

Population density: Intermediate (Ref: n.a.) 0.234** 0.118  

Population density: Low (Ref: n.a.) 0.271** 0.114  

Gross income quintile: 2 (Ref: 1) -0.816*** 0.078  
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Gross income quintile: 3 (Ref: 1) -0.925*** 0.080  

Gross income quintile: 4 (Ref: 1) -1.019*** 0.088  

Gross income quintile: 5 (Ref: 1) -1.180 0.089  

Digital skills 0.219 0.110  

- interaction with Education: Medium -0.048 0.051  

- interaction with Education: High 0.023 0.101  

Regional dummies (NUTS 2) yes   

Note: Occupation grouped as follows: 1 = armed forces & managers; 2 = professionals; 3 = Technicians and associate 

professionals; 4 = Clerks; 5 = Service workers and shop and market sales workers; 6 = Skilled agricultural and fishery 

workers; 7 = Craft and related trades workers; 8 = Plant and machine operators and assemblers; 9 = Elementary occupations. 

P-values below .1 in bold. 

Key: * = p < .1, ** = p < .05, *** = p < .01 

Source: Our computation on longitudinal EU-SILC data 2016-2019. 

 

Table C6: Estimation results for net earnings (linear regression). Output: Changes in transformed net 

yearly earnings (inverse hyperbolic syne transformation) between 2016 and 2019.  Sample: population 

observed as employed in 2016. 

Linear regression 
 

  

  Number of observations 43,191 

Outcome: Net earnings growth 2016-2019 
 

Prob > F 0.000 
  

R2 0.057 
 

Coef. Std. Err.  

Employed (2019) 0.151*** 0.027  

Employed (2016) 0.000 (omitted)  

Occupation: 1 (ref: n.a.) 0.088 0.148  

Occupation: 2 (ref: n.a.) 0.037 0.139  

Occupation: 3 (ref: n.a.) 0.005 0.142  

Occupation: 4 (ref: n.a.) -0.032 0.142  

Occupation: 5 (ref: n.a.) -0.035 0.142  

Occupation: 6 (ref: n.a.) -0.135 0.145  

Occupation: 7 (ref: n.a.) -0.081 0.138  

Occupation: 8 (ref: n.a.) -0.040 0.138  

Occupation: 9 (ref: n.a.) -0.099 0.140  

Age -0.024*** 0.006  

Age squared 0.000*** 0.000  

Sex: Female (Ref: Male) -0.035 0.031  

Living in consensual union, legal basis (Ref: n.a.) -0.055 0.057  

Living in consensual union, no legal basis (Ref: n.a.) -0.102** 0.041  

Not living in consensual union (Ref: n.a.) -0.067* 0.037  

Education: Medium (Ref: Low) 0.086* 0.045  

Education: High (Ref: Low) 0.113 0.095  

Household size 0.045*** 0.006  

Living in consensual union, legal basis 0.001 0.073  

Living in consensual union, no legal basis -0.039 0.075  

Not living in consensual union -0.132* 0.073  



No. children 0-3 -0.041*** 0.014  

- interaction with Sex: Female 0.015 0.018  

No. children 4-6 -0.049*** 0.017  

- interaction with Sex: Female -0.003 0.025  

Population density: High (Ref: n.a.) 0.065 0.044  

Population density: Intermediate (Ref: n.a.) 0.041 0.045  

Population density: Low (Ref: n.a.) 0.058 0.045  

Gross income quintile: 2 (Ref: 1) -0.437*** 0.045  

Gross income quintile: 3 (Ref: 1) -0.565*** 0.041  

Gross income quintile: 4 (Ref: 1) -0.629*** 0.041  

Gross income quintile: 5 (Ref: 1) -0.815*** 0.045  

Digital skills -0.050 0.061  

- interaction with Education: Medium 0.016 0.031  

- interaction with Education: High 0.052 0.044  

Changes in digital capital intensity 0.044 0.060  

- interaction with Education: Medium -0.055 0.062  

- interaction with Education: High -0.051 0.064  

Changes in robot density -0.001 0.002  

- interaction with Education: Medium 0.001 0.002  

- interaction with Education: High 0.001 0.002  

Regional dummies (NUTS 2) Yes 
  

Note: Occupation grouped as follows: 1 = armed forces & managers; 2 = professionals; 3 = Technicians and associate 

professionals; 4 = Clerks; 5 = Service workers and shop and market sales workers; 6 = Skilled agricultural and fishery 

workers; 7 = Craft and related trades workers; 8 = Plant and machine operators and assemblers; 9 = Elementary occupations. 

P-values below .1 in bold. 

Key: * = p < .1, ** = p < .05, *** = p < .01 

Source: Our computation on longitudinal EU-SILC data 2016-2019. 

 

Despite the lower explanatory power, the fit of the net earnings equation is still very good, as shown 

in Figure C2.  
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Figure C2: Step 1 - Net earnings fit for 2019, based on 2016 characteristics. EU27 2016-2019 sample 

 

Gray: observed distribution. Red: estimated distribution: 2016-2019 sample aged between 17 and 61 in 2016. 

Source: Our computation on longitudinal EU-SILC data 2016-2019. 

 

The mean of predicted yearly gross earnings is EUR 31,638, against EUR 33,379 for observed 

earnings, in the sample; the estimated median is EUR 24,123, against EUR 24,677 for the observed 

median.   

 

Step 2: Simulation of 2019 outcomes on 2013-2016 wave, based on the 

results of Step 1 

The next step is using the estimates obtained in Step 1 to simulate 2019 outcomes on the 2013-2016 

wave. This is possible because in that wave we have individuals who are observed in all years 2013-

2016. For these individuals, information is available on their characteristics in 2016. This allows to 

use the Step 1 models to make predictions for the 2013-2016 population. 

To be stressed again, the employment transition logit model predicts the probability of employment. 

We use this probability to simulate the outcome (either employed or not employed) with a 

Montecarlo draw. Results therefore also depend, in addition to the distributional characteristics of 

the population of the 2013-2016 wave (which might be different from those of the 2016-2019 wave, 

see Tables in Appendix B)  on a stochastic element, which is the motivation for our bootstrapping 

strategy. With the specific draw of the example, we obtain an average simulated employment rate in 

2019, in the EU27, of 73.5% for the 2013-2016 sample aged between 17 (in 2013) and 61 (in 2016), 

who would have been between 20 in 2016 and 64 in 2019. By comparison, the observed employment 

rate in 2019 for the 2016-2019 sample aged between 20 (in 2016) and 64 (in 2019) is 70.4%. The 

difference is partly attributable to differences in the characteristics of the two samples, and in 

particular to an evolving age structure due to population ageing (see again the descriptive statistics 

in Appendix B), which in itself drives employment rates down, and partly to the specific random 

draws used for the Montecarlo simulation. 



The gross earnings distribution for 2019 simulated on the 2013-2016 sample looks remarkably 

similar to the observed distribution for the 2016-2019 sample, despite the differences in the two 

populations (Figure C3).31 

 

Figure C3: Step 2 - Observed and simulated 2019 earnings distribution, gross (left panel) and net 

(right panel) 

  

Gray: observed distributions, 2016-2019 sample. Red: simulated distributions, 2013-2016 sample. All individuals aged between 17 and 

61 in 2016. The simulated distributions are the counterpart on the 2013-2016 sample of the estimated distributions: they are obtained 

applying the same estimated coefficients from Step 1, but on the 2013-2016 sample. 

Source: Our computation on longitudinal EU-SILC data 2013-2019. 

 

Step 3: Estimation of 2019 (projected) outcomes on 2013-2016 wave  

Step 3 is again an estimation step, where the simulated 2019 outcomes for the 2013-2016 wave – as 

computed in Step 2 – are regressed against 2013 inputs.  

Estimates of the employment equation show a good fit, with a target rate of 73.5% (see Step 2) and 

a predicted rate of 72.9%.32  

We then estimate our wage equations, where the outcome is simulated changes in (gross and net) 

earnings between 2013 and 2019, as computed in Step 2. The goal is to obtain coefficients that can 

then be applied to the 2010-2013 sample. Figure C4 shows the observed distribution of 2019 gross 

earnings (in gray), superimposed to the simulated distribution of 2019 gross earnings for the 2013-

2016 sample, and the estimated distribution for the same sample (in blue). The three distributions are 

broadly comparable. 

  

 
31 Different random draws for the Montecarlo simulation of employment outputs lead to slightly different estimated distributions of 
earnings. This is because the earnings regressions control for employment outputs. The results shown here refer to a single repetition of 

the Montecarlo simulation.  

32 Estimation results are available upon request. 
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Figure C4: Step 3 - Earnings equation fit for 2019 gross earnings, based on 2013 characteristics. EU27 

2013-2019 sample 

 

Gray: observed distribution, 2016-2019 sample. Red: simulated distribution, 2013-2016 sample. Blue: estimated distribution, 2013-2016 

sample. All individuals aged between 17 and 61 in 2016. The simulated distribution in red is the same as in Figure 7. 

Source: Our computation on longitudinal EU-SILC data 2013-2019. 

 

The same is true for net earnings (Figure C5).  
 

Figure C5: Step 3 - Wage equation fit for 2019 net earnings, based on 2013 characteristics. EU27 2013-

2019 sample 

 

Gray: observed distribution, 2016-2019 sample. Red: simulated distribution, 2013-2016 sample. Blue: estimated distribution, 2013-2016 

sample. All individuals aged between 17 and 61 in 2016. The simulated distribution in red is the same as in Figure 7. 

Source: Our computation on longitudinal EU-SILC data 2013-2019. 



Step 4: Prediction of 2019 outcomes on 2010-2013 wave, based on the results 

of Step 3 

Step 4 involves applying the estimates from Step 3 to the 2010-2013 sample, in order to obtain 

projected outcomes in 2019 for this sample. To this aim, we exploit the fact that both the 2010-2013 

sample and the 2013-2016 sample contain individuals observed in 2013. With the specific 

Montecarlo draws used for the simulation, we obtain a simulated employment rate in 2019 of 75.2% 

for the 2010-2013 sample, against a target of 72.9% on the 2013-2016 sample. Again, the difference 

is attributable to differences in the characteristics of the two samples, in addition to the randomness 

in the Montecarlo procedure for attribution of employment states based on the estimated employment 

probabilities. 

The gross earnings distribution for 2019 simulated on the 2010-2013 sample and the observed 

distribution for the 2016-2019 sample are depicted in Figure C6, for both gross and net earnings. The 

longer time gap between the two samples contributes to differentiate them (in addition to the 

Montecarlo variability). 

 

Figure C6: Step 4 - Observed and simulated 2019 earnings distribution, gross (left panel) and net 

(right panel) 

  

Gray: observed distributions, 2016-2019 sample. Blue: simulated distributions, 2010-2013 sample. All individuals aged between 17 and 

58 in 2013. The simulated distributions are the counterpart on the 2010-2013 sample of the estimated distributions in blue of Figures 8 

and 9: they are obtained applying the same estimated coefficients from Step 3, but on the 2010-2013 sample. 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

Step 5: Estimation of 2019 (projected) outcomes on 2010-2013 wave 

Finally, in Step 5 we estimate the relationships of interest, the effects of digital intensity over the 

decade 2010-2019, for the 2010 population. Estimates from the employment equations, where the 

outcome is simulated employment in 2019, are reported in Tables C7 and C8, respectively for the 

whole population and the population of individuals observed as employed in 2010. The analysis 

confirms qualitatively the results for the 2016-2019 sample: the probability of being in employment 

in 2019 depends positively on being already employed in 2010 and on initial income (measured in 

quintiles), with a substantial gender gap, especially for families with young children; there is a 

positive effect of endowments in digital skills with limited or no educational gradient for the whole 

sample, but not for the sample of those starting as employed (implying strong effects of digital skills 

for those not in employment); indicators of demand for digital skills are not significant. Hence, the 

conclusion from the analysis on the whole period 2010-2019 – for the specific Montecarlo draw 

considered here – reinforces results from the sub-periods: digital skills are important for finding a 

job, less so for retaining it. 



51 
 

 

Table C7: Estimation results for employment equation (logistic regression). Output: Simulated 

employment in 2019. Sample: EU27 (excluding Germany), working age population. 

Logistic regression 
 

  

  Number of 

observations 

51,034 

Outcome: Simulated employment in 2019 
 

Prob > chi2 0.000 
  

Pseudo R2 0.206 
    

 
Coef. Std. Err.  

Employed (2010) 0.901*** 0.049  

Age 0.372*** 0.016  

Age squared -0.005*** 0.000  

Sex: Female (Ref: Male) -0.712*** 0.044  

Health: Strongly limiting (Ref: n.a.) -0.403*** 0.126  

Health: Limiting (Ref: n.a.) -0.280*** 0.105  

Health: Not limiting (Ref: n.a.) -0.047 0.089  

Education: Medium (Ref: Low) -0.041 0.059  

Education: High (Ref: Low) 0.280* 0.143  

Household size 0.029* 0.017  

Living in consensual union, legal basis (Ref: n.a.) 1.449** 0.632  

Living in consensual union, no legal basis (Ref: n.a.) 1.601** 0.635  

Not living in consensual union (Ref: n.a.) 1.644*** 0.633  

No. children 0-3 0.127 0.086  

- interaction with Sex: Female -0.328*** 0.102  

No. children 4-6 0.165* 0.094  

- interaction with Sex: Female -0.172 0.114  

Population density: High (Ref: n.a.) -0.074 0.149  

Population density: Intermediate (Ref: n.a.) -0.013 0.151  

Population density: Low (Ref: n.a.) 0.048 0.150  

Gross income quintile: 2 (Ref: 1) 0.142** 0.061  

Gross income quintile: 3 (Ref: 1) 0.380*** 0.060  

Gross income quintile: 4 (Ref: 1) 0.512*** 0.065  

Gross income quintile: 5 (Ref: 1) 0.525*** 0.072  

Digital skills 0.411*** 0.064  

- interaction with Education: Medium -0.010 0.056  

- interaction with Education: High -0.086 0.111  

Regional dummies (NUTS 2) Yes 
  

Note: Occupation grouped as follows: 1 = armed forces & managers; 2 = professionals; 3 = Technicians and associate 

professionals; 4 = Clerks; 5 = Service workers and shop and market sales workers; 6 = Skilled agricultural and fishery 

workers; 7 = Craft and related trades workers; 8 = Plant and machine operators and assemblers; 9 = Elementary occupations. 

P-values below .1 in bold. 

Key: * = p < .1, ** = p < .05, *** = p < .01 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

 

  



Table C8: Estimation results for employment equation (logistic regression). Output: Simulated 

employment in 2019. Sample: EU27 (excluding Germany), individuals observed as employed in 2010. 

Logistic regression 
 

  

  Number of 

observations 

34,233 

Outcome: Simulated employment in 2019 
 

Prob > chi2 0.000 
  

Pseudo R2 0.175 
 

Coef. Std. Err.  

Employed (2010) 0.000 (omitted)  

Occupation: 1 (ref: n.a.) -0.130 0.296  

Occupation: 2 (ref: n.a.) 0.023 0.280  

Occupation: 3 (ref: n.a.) 0.034 0.274  

Occupation: 4 (ref: n.a.) -0.039 0.276  

Occupation: 5 (ref: n.a.) -0.207 0.275  

Occupation: 6 (ref: n.a.) -0.180 0.288  

Occupation: 7 (ref: n.a.) -0.106 0.290  

Occupation: 8 (ref: n.a.) -0.328 0.292  

Occupation: 9 (ref: n.a.) -0.277 0.294  

Age 0.467*** 0.024  

Age squared -0.007*** 0.000  

Sex: Female (Ref: Male) -0.870*** 0.107  

Living in consensual union, legal basis (Ref: n.a.) 0.005 0.193  

Living in consensual union, no legal basis (Ref: n.a.) -0.126 0.137  

Not living in consensual union (Ref: n.a.) 0.002 0.114  

Education: Medium (Ref: Low) 0.164 0.159  

Education: High (Ref: Low) 0.747** 0.340  

Household size 0.020 0.025  

Living in consensual union, legal basis 0.657 0.817  

Living in consensual union, no legal basis 0.822 0.820  

Not living in consensual union 0.862 0.819  

No. children 0-3 0.115 0.100  

- interaction with Sex: Female -0.250* 0.133  

No. children 4-6 0.081 0.110  

- interaction with Sex: Female -0.093 0.144  

Population density: High (Ref: n.a.) -0.245 0.180  

Population density: Intermediate (Ref: n.a.) -0.210 0.182  

Population density: Low (Ref: n.a.) -0.119 0.182  

Gross income quintile: 2 (Ref: 1) 0.211** 0.089  

Gross income quintile: 3 (Ref: 1) 0.351*** 0.088  

Gross income quintile: 4 (Ref: 1) 0.457*** 0.093  

Gross income quintile: 5 (Ref: 1) 0.577*** 0.105  

Digital skills 0.127 0.220  

- interaction with Education: Medium 0.044 0.111  

- interaction with Education: High -0.126 0.168  

Changes in digital capital intensity 0.018 0.119  

- interaction with Education: Medium 0.081 0.131  

- interaction with Education: High 0.084 0.200  

Changes in robot density -0.007 0.006  

- interaction with Education: Medium 0.004 0.006  

- interaction with Education: High -0.002 0.007  

Regional dummies (NUTS 2) Yes 
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Note: Occupation grouped as follows: 1 = armed forces & managers; 2 = professionals; 3 = Technicians and associate 

professionals; 4 = Clerks; 5 = Service workers and shop and market sales workers; 6 = Skilled agricultural and fishery 

workers; 7 = Craft and related trades workers; 8 = Plant and machine operators and assemblers; 9 = Elementary occupations. 

P-values below .1 in bold. 

Key: * = p < .1, ** = p < .05, *** = p < .01 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

 

Tables C9 and C10 show the results from the analysis of the effects of digital transformation on gross 

earnings. In this specific Montecarlo draw, results from our initial analysis on the period 2016-2019 

are qualitatively confirmed. Individuals with higher levels of  digital skills who are not employed in 

the initial period experience more earnings growth, and the effect is stronger for lower levels of 

education. As with respect to the indicators of demand for digital skills, in this Montecarlo draw we 

find that changes in digital capital intensity in the past decade are positively associated with growth 

in gross earnings, while changes in robot density are negatively associated with growth in gross 

earnings, but these effects are detectable only for the low educated.  

 

  



Table C9: Estimation results for gross earnings (linear regression). Output: Changes in transformed 

gross yearly earnings (inverse hyperbolic syne transformation) between 2010 and 2019.  Sample: EU27 

(excluding Germany), population observed as not employed in 2010. 

Linear regression 
 

  

  Number of 

observations 

16,330 

Outcome: Simulated gross earnings growth 2010-2019 
 

Prob > F 0.000 
  

R2 0.633 
    

 
Coef. Std. Err.  

Employed (2019) 0.134*** 0.005  

Employed (2010) 0.000 (omitted)  

Age -0.002 0.002  

Age squared 0.000 0.000  

Sex: Female (Ref: Male) 0.014** 0.006  

Health: Strongly limiting (Ref: n.a.) -0.005 0.012  

Health: Limiting (Ref: n.a.) 0.009 0.012  

Health: Not limiting (Ref: n.a.) 0.021** 0.010  

Education: Medium (Ref: Low) -0.034*** 0.007  

Education: High (Ref: Low) -0.041*** 0.015  

Household size -0.007*** 0.002  

Living in consensual union, legal basis (Ref: n.a.) 0.034 0.034  

Living in consensual union, no legal basis (Ref: n.a.) -0.020 0.035  

Not living in consensual union (Ref: n.a.) -0.049 0.035  

No. children 0-3 0.019 0.011  

- interaction with Sex: Female 0.012 0.012  

No. children 4-6 0.026* 0.015  

- interaction with Sex: Female -0.011 0.016  

Population density: High (Ref: n.a.) -0.105*** 0.017  

Population density: Intermediate (Ref: n.a.) -0.140*** 0.017  

Population density: Low (Ref: n.a.) -0.128*** 0.017  

Gross income quintile: 2 (Ref: 1) -0.118*** 0.007  

Gross income quintile: 3 (Ref: 1) -0.218*** 0.007  

Gross income quintile: 4 (Ref: 1) -0.270*** 0.008  

Gross income quintile: 5 (Ref: 1) -0.309*** 0.009  

Digital skills 0.017** 0.009  

- interaction with Education: Medium 0.008* 0.005  

- interaction with Education: High -0.01087 0.0091286  

Regional dummies (NUTS 2) Yes 
  

Note: Occupation grouped as follows: 1 = armed forces & managers; 2 = professionals; 3 = Technicians and associate 

professionals; 4 = Clerks; 5 = Service workers and shop and market sales workers; 6 = Skilled agricultural and fishery 

workers; 7 = Craft and related trades workers; 8 = Plant and machine operators and assemblers; 9 = Elementary occupations. 

P-values below .1 in bold. 

Key: * = p < .1, ** = p < .05, *** = p < .01 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 
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Table C10: Estimation results for gross earnings (linear regression). Output: Changes in transformed 

gross yearly earnings (inverse hyperbolic syne transformation) between 2010 and 2019.  Sample: EU27 

(excluding Germany), population observed as employed in 2010. 

Linear regression   

  Number of observations 33,749 

Outcome: Simulated gross earnings growth 2010-2019 
 

Prob > F 0.000 
  

R2 0.679 
    

 
Coef. Std. Err.  

Employed (2019) 0.119*** 0.004  

Employed (2010) 0.000 (omitted)  

Occupation: 1 (ref: n.a.) 0.017 0.013  

Occupation: 2 (ref: n.a.) 0.015 0.013  

Occupation: 3 (ref: n.a.) 0.006 0.013  

Occupation: 4 (ref: n.a.) 0.000 0.013  

Occupation: 5 (ref: n.a.) 0.017 0.013  

Occupation: 6 (ref: n.a.) -0.020 0.014  

Occupation: 7 (ref: n.a.) 0.004 0.014  

Occupation: 8 (ref: n.a.) 0.001 0.014  

Occupation: 9 (ref: n.a.) 0.025* 0.014  

Age -0.004*** 0.001  

Age squared 0.000 0.000  

Sex: Female (Ref: Male) -0.013*** 0.005  

Living in consensual union, legal basis (Ref: n.a.) -0.018* 0.009  

Living in consensual union, no legal basis (Ref: n.a.) -0.018*** 0.006  

Not living in consensual union (Ref: n.a.) -0.019*** 0.005  

Education: Medium (Ref: Low) 0.002 0.008  

Education: High (Ref: Low) 0.027* 0.015  

Household size 0.009*** 0.001  

Living in consensual union, legal basis 0.016 0.017  

Living in consensual union, no legal basis -0.023 0.017  

Not living in consensual union -0.040** 0.017  

No. children 0-3 0.025*** 0.003  

- interaction with Sex: Female -0.009** 0.004  

No. children 4-6 0.008** 0.003  

- interaction with Sex: Female -0.008* 0.004  

Population density: High (Ref: n.a.) -0.100*** 0.007  

Population density: Intermediate (Ref: n.a.) -0.118*** 0.007  

Population density: Low (Ref: n.a.) -0.103*** 0.007  

Gross income quintile: 2 (Ref: 1) -0.094*** 0.005  

Gross income quintile: 3 (Ref: 1) -0.165*** 0.005  

Gross income quintile: 4 (Ref: 1) -0.207*** 0.005  

Gross income quintile: 5 (Ref: 1) -0.253*** 0.005  

Digital skills -0.014 0.011  

- interaction with Education: Medium 0.006 0.006  

- interaction with Education: High 0.004 0.007  

Changes in digital capital intensity 0.019*** 0.006  

- interaction with Education: Medium -0.019*** 0.007  

- interaction with Education: High -0.025**** 0.007  

Changes in robot density -0.002*** 0.000  



- interaction with Education: Medium 0.001*** 0.000  

- interaction with Education: High 0.001749 0.00027  

Regional dummies (NUTS 2) yes 
  

Note: Occupation grouped as follows: 1 = armed forces & managers; 2 = professionals; 3 = Technicians and associate 

professionals; 4 = Clerks; 5 = Service workers and shop and market sales workers; 6 = Skilled agricultural and fishery 

workers; 7 = Craft and related trades workers; 8 = Plant and machine operators and assemblers; 9 = Elementary occupations. 

P-values below .1 in bold. 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

 

The same is true with respect to net earnings (results not shown). 
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Appendix D. Results for net earnings 

Table D1: Estimated coefficients for the effects of changes in digital capital intensity and robot density 

in the industry of employment in 2010 on (approximate) net earnings growth between 2010 and 2019. 

Sample: EU27 (excluding Germany). 

 Digital capital intensity Robot density 

Sample employed Employed 

Education low medium high low medium high 

Mean effect 0.024 -0.005 -0.010 -0.0018 -0.0001 0.0001 

Std.dev. 0.001 0.000 0.000 0.0000 0.0000 0.0000 

Min 0.022 -0.006 -0.011 -0.0019 -0.0002 0.0001 

Max 0.026 -0.003 -0.009 -0.0017 -0.0001 0.0002 

Note: The table reports summary statistics for the estimated coefficients over 100 repetitions of the concatenated analysis 

from Step 5. The coefficients measure the approximate percentage change in gross yearly earnings (difference in inverse 

hyperbolic sine transformation) between 2010 and 2019 corresponding to a one standard deviation increase in the value of 

the index over the same period. 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

 

Table D2: Estimated coefficients for the effects of the 2010 endowment of digital skills on 

(approximate) net earnings growth between 2010 and 2019. Sample: EU27 (excluding 

Germany). 

Sample Not employed Employed 

Education low medium high Low medium high 

Mean effect 0.027 0.036 -0.006 -0.014 -0.012 -0.019 

Std.dev. 0.001 0.002 0.001 0.001 0.001 0.001 

Min 0.024 0.033 -0.009 -0.018 -0.015 -0.021 

Max 0.031 0.040 -0.002 -0.009 -0.009 -0.016 

Note: The table reports summary statistics for the estimated coefficients over 100 repetitions of the concatenated analysis 

from Step 5. The coefficients measure the approximate percentage change in net yearly earnings (difference in inverse 

hyperbolic sine transformation) between 2010 and 2019 corresponding to a one standard deviation increase in the value of 

the index. 

Source: Our computation on longitudinal EU-SILC data 2010-2019. 

 

 

 

 


