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Non-technical summary 

 

The effects of poverty on a family are most serious when the family experiences sustained 
poverty over a long period, rather than as a transient phase. For this reason, policy makers in 
both developed and less-developed countries are interested in monitoring the extent of chronic 
or persistent poverty within society. For example, the EU has adopted a measure of persistent 
poverty as part of its programme of monitoring progress on social inclusion. In low-income 
countries, the aim of reducing chronic poverty is central to development policy. 

Poverty persistence is measured using data from household panels: a large randomly-selected 
group of households is interviewed repeatedly over a run of years, to assess whether they fall 
below a poverty line in each year. The simplest measure of poverty persistence in the population 
can then be estimated as the proportion of sampled households that are found to be in poverty 
for more than a critical number of years during a given period of time.  

A major difficulty with this type of measure is the problem of missing data. Participation in a 
panel survey is voluntary and some households may refuse to take part in some years; other 
households may be impossible to contact, or interviews may not be completed for other reasons. 
If we are unable to observe a household in every year, it will not be possible to assess how much 
of the period is spent in poverty. The usual method of dealing with missing data is to use the 
subset of households which are fully observed in every period and correct any apparent non-
representativeness in that sample by giving greater weight to types of household that appear to 
be under-represented in the reduced sample. The drawback of that re-weighting procedure is 
that it is known to give biased results if the reasons for data to be missing are directly related to 
poverty – for example, if there is a problem in contacting households that move to the city to 
escape poverty. 

We develop an alternative “partial identification” method of dealing with missing data and apply 
it to a panel survey carried out by the Peruvian National Institute of Statistics. By considering all 
possible outcomes that the missing poverty observations could have taken, we construct a lower 
and upper bound on the possible values of the persistent poverty measure that we want to 
estimate. These bounds are very wide, demonstrating that missing data introduces a very large 
element of uncertainty into the estimation of persistent poverty measures. But we then show that 
introducing further very mild assumptions allows us to make much more refined estimates. 
Those results show that, for the Peruvian data, the standard re-weighting method is badly biased 
and tends to result in an over-estimate of the rate of persistent poverty in the population. 
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1 Introduction

Poverty is always a serious issue for the people directly affected by it, and for society in

general. But the adverse long-term consequences of poverty are particularly serious for

a society with highly persistent poverty concentrated in part of the population. Poverty

persistence interferes with the processes of health and human capital formation, particularly

early in life, and this propagates poverty across generations. Persistent poverty is also

socially divisive. If we accept the importance of poverty persistence as a social problem,

it becomes important to monitor its occurrence and change over time. A leading example

of this policy concern for poverty persistence in developed countries is the adoption by the

European Union (EU) of a specific measure of the risk of persistent poverty as one of its

core social indicators: see Atkinson et al (2002) and European Commission (2009) for an

account of the EU approach to monitoring of social exclusion. But poverty persistence is a

much more challenging problem in developing countries, and is the focus of much research

and policy activity (Baulch and Hoddinott 2000).

Poverty persistence is an ambiguous concept, and there are many possible measures. In

discrete time, such measures capture the tendency for periods of poverty to cluster in ad-

jacent periods for households observed longitudinally. Jenkins and Van Kerm (2012) have

criticised the EU measure on grounds that single-period poverty rates provide a good indica-

tion of the evolution of persistent poverty over time and are less subject to the measurement

difficulties that are associated with measurement of persistence. Nevertheless, poverty persis-

tence remains an important concern, particularly in the development context, where poverty

processes may be quite different to those observed in the EU.

Empirical implementation of any chosen measure of poverty persistence is not straightfor-

ward. It requires longitudinal household income or consumption data, which are inevitably

affected by problems of non-response and sample attrition. Methods such as inverse prob-

ability weighting for non-response are widely used to adjust for these problems, but they

rest on strong assumptions which are not directly testable. Typically, those assumptions

require that the response process should be independent of the poverty process, conditional

on observable characteristics and circumstances.
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An alternative to pursuing the bias correction approach is to make fewer assumptions

and accept that measurement will be subject to a degree of inherent uncertainty. This

is the partial identification approach, which generates estimates of logical bounds on the

persistence measure, rather than a single point estimate. There is a long history of this

approach in statistics, but the current interest in partial identification largely stems from

the pioneering work of Manski and his collaborators (Manski 1995, 2003). See Tamer (2010)

for a recent review of the field. These methods have been used to deal with the problem of

missing income data in poverty measurement in the single-period cross-section context by

Nicoletti (2010) and Nicoletti et al (2011) but, to the best of our knowledge, they have not

so far been used for poverty analysis in the dynamic context.

In this paper, we consider measures of poverty persistence which are either defined as the

proportion of panel members experiencing at least some critical number of periods of poverty

within a fixed observation window, or a simple elaboration of it. We focus on the problem

of non-response/attrition and establish worst-case nonparametric bounds on the persistent

poverty measures, showing that they are very wide for the rate of non-response typical of

household panel surveys. This demonstrates that standard balanced-panel measurement of

persistent poverty is highly vulnerable to doubts about the validity of weighting methods

designed to compensate for non-response. We consider how the bounds can be narrowed by

introducing additional information in the form of plausible a priori assumptions, and apply

these improved bounds to the ENAHO panel data from Peru. We find that the resulting esti-

mates are informative and that they cast serious doubt on the validity of standard weighting

procedures conventionally used to ‘adjust’ for non-response.

2 Persistent poverty in Peru

In this paper, we analyse poverty at the household, rather than individual, level. There

are several reasons for this. First, the household is the basic unit of anti-poverty policy in

Peru (and many other countries), since the provision of assistance to particular individuals

(especially children) within households is often infeasible. Poverty research at the household

level matches this aspect of policy. Second, the conventional measures of economic wellbeing

(such as equivalised income or consumption expenditure) that are used in most poverty
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analysis are defined at the household level. This implies that the multivariate distribution of

individual poverty states with households is statistically degenerate in the sense that, with

probability 1, all household members are in the same poverty state. Thus any individual-

level poverty analysis is essentially a household analysis, weighted by household size. There

is a third difficulty with individual-level poverty analysis in our cases, where we are dealing

with missing data. If a household is non-respondent to the survey, we cannot observe the

number of individuals it contains, so an individual-based analysis is impossible.

2.1 The Peruvian ENAHO panel surveys

Our analysis is based on the Peruvian National Household Survey, Encuesta Nacional de

Hogares (ENAHO), which is the official household survey run by the Peruvian National

Institute of Statistics since 1995 to monitor household living conditions. The information

provided by ENAHO is used by the government to calculate official estimates of poverty,

under the supervision of an independent poverty committee. The survey covers the whole

national territory for urban and rural areas, 24 counties (departmentos) and the constitu-

tional province of Callao. The sample is drawn from a sampling frame based on the 2005

National population and housing census, independently across counties. Within counties, a

probabilistic sample of areas is drawn using a multistage, stratified procedure. For urban

areas, primary sampling units are population centers with 2000 or more inhabitants and

secondary sampling units are clusters with 120 addresses on average; tertiary sampling units

are addresses. In rural areas, primary sampling units are of two types, either urban popula-

tion centres with 500 to 2000 inhabitants, or rural enumeration areas covering an average of

100 addresses. The secondary sampling units for rural areas are either clusters of addresses

(120 per cluster on average) or individual addresses. Tertiary sampling units for rural areas

are addresses. On average there are six sampled addresses per urban cluster and eight per

rural cluster. To measure changes in the behavior of some characteristics of the population,

the ENAHO maintains a sub-sample of addresses as a panel. We use the five-wave panel

spanning the period 2007 to 2011.

Like many panel surveys from developing countries, the ENAHO sampling scheme is

address-based rather than household-based. Households that move to a new address are not

followed and retained in the panel; instead the new occupants of the sampled address enter
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the panel as a separate new household unit. ENAHO conventions define a move to have

taken place between period t and t + 1 if there is no individual living at the address in both

periods. An address affected by a (single) move will generate two panel households, one with

missing observations for the periods before the move, the other with missing observations

after the move. The “missingness” process therefore encompasses both the usual survey

refusal and non-contact processes and the process of geographical mobility. The volume

of missing data and the resulting bias consequently differs substantially from what would

we would find in a household panel survey that follows mobile individuals according to a

set of following rules. As has been pointed out by several authors (see Thomas et al 2001,

Rosenzweig 2003 and Dercon and Shapiro 2007), mobility – particularly from rural to urban

areas – can be an important way out of poverty for many households in developing countries,

so there is potential for serious attrition bias and our approach, which avoids the missing

at random (MAR) assumption underlying typical survey weighting schemes, is particularly

valuable for such surveys.

The ENAHO collects a wide range of information on income and expenditure, allowing

the construction of household annual aggregates of either total income or total expenditure.

We use total annual household expenditure per equivalent adult rather than income as our

welfare indicator for three reasons: first, expenditure is generally considered a more reliable

indicator than income, which is often poorly measured in poor rural households; second,

expenditure smoothes short-term fluctuations in household resources, capturing more accu-

rately movements in the standard of living; third, it captures better non-monetary resources,

particularly own-account transactions (self-supply) and transfers in kind from institutions

and other households. The expenditure variable is constructed by the Peruvian National

Institute of Statistics and takes into account the following consumption items received from

any sources: food consumed inside and outside the household; clothing and shoes; housing

rent; fuel, electricity and housing repairs; furniture and housing maintenance; health ser-

vices and self-administered health care; transport and communications; leisure, amenities

and education and cultural services; other goods and services. Excluded from the expendi-

ture aggregate are public health or public education, the value of consumption services from

durable goods and the consumption of water supplies taken from the river.
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The consumption data are equivalised to accommodate differences in household size and

structure, giving household expenditure per equivalent adult in 2005 purchasing power parity

(PPP) terms. The analysis is carried out at the household, rather than individual, level and

uses an equivalence scale constructed as e = (A + ϕC)θ, where A and C are the numbers of

adults and children in the household. We use parameters ϕ = 0.65 and θ = 0.70, which are in

line with Deaton and Zaidi’s (2002) recommendations foran upper middle-income country

like Peru. We use a time/location-secific poverty line consistent with the official poverty line

provided by ENAHO to indicate non-extreme poverty. However, that poverty line is defined

in relation to a per capita equivalence scale, so we adjust it by applying annual PPP factors

and then multiplying by a factor defined as ratio of the regional means of the per capita and

Deaton-Zaidi equivalence scales.

2.2 Patterns of panel response and nonresponse weights

Figure 1 shows the distribution of numbers of missing poverty observations within the 2007-

11 observation window for the ENAHO panel. Non-response and attrition are a serious

problem: 30% of the 2,031 households in the ENAHO panel have two or more missing

observations and 18% have three or more missing. If we were to use a 5-year balanced panel,

this would mean discarding 43% of panel members.

The ENAHO provides a combined weight variables designed to adjust for both unequal

sampling rates in the survey design and non-response behaviour by panel members. The

nonresponse component of this weighting variable is area-based. The country is divided by

geographical region, county and degree of urbanisation into 178 areas, each of which is further

partitioned into five socioeconomic strata. These units are then classified into five categories

based on the 2005 population and housing census. The classification takes into account (i)

dwelling conditions (based on floor and roof materials; (ii) household overcrowding; (iii)

access to piped water and sewerage; and (iv) average childhood school attendance. Inverse

probability response weights are then constructed sparately for each wave of the panel. The

resulting weights are routinely used in research based on data from the ENAHO panel. Since

our partial identification approach deals explicitly with non-response, we require only weights

that adjust for unequal sampling rates, not for non-response. To construct these weights, we

follow the procedure used by ENAHO, using the product of the inverse selection probabilities
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at each stage of the sample design. This takes into account the forecast population by age

and sex for each month and district over the period of the panel (2007-2011).

Figure 1 Distribution of numbers of missing observations in 5 waves
(ENAHO panel 2007-11; n = 2031 households, unweighted)

The well-established link between rural-urban migration and poverty reduction, together

with the address-based design of the ENAHO panel, gives strong reason to question the

MAR assumption which underlies conventional nonresponse weighting methods. There is

indeed some evidence in the ENAHO data that the pattern of missing data might be related

to the pattern of recurrent poverty. Define a crude poverty indicator for each household as

the proportion of non-missing expenditure observations which are below the poverty line.

Figure 2 shows the distribution of this indicator across households which are fully-observed

and across households with some missing data. Under MAR, one would not expect any

significant difference in the distribution of the proportion of time spent in poverty between

the fully-observed and partially-observed cases, but the proportion of poverty-free households

is far smaller for the fully-observed group. While this is not conclusive, it does underline

concerns about the MAR assumption underpinning conventional analyses.
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Figure 2 Distributions of the proportion of poverty observations
in fully-observed and partially-observed households
(ENAHO panel 2007-11; n = 2031 households, design+non-response weights)

3 Measures of persistent poverty

Foster (2009) proposed a family of measures of chronic or persistent poverty. Here we

consider the two members of that family which treat poverty as a binary state, together

with a related measure used for monitoring purposes by the EU. We assume that panel data

are available, covering a T -year observation period. Households are sampled randomly and an

attempt is made to observe each household in periods 1...T . If these attempts are successful,

they yield a sample {Yit; i = 1...n, t = 1...T}, where Yt is a binary indicator of poverty in

period t. In practice, some observations are missing and the pattern of ‘missingness’ may

be non-ignorable, so that estimation of any poverty statistic from the balanced sub-panel

of households observed in all T periods is potentially subject to bias. We begin by giving

the simplest (“worst case”) bounds, without using conditioning covariates or other external

information. The simple nature of these measures makes it possible to work mainly with
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count variables summarising the poverty trajectory of the household within the observation

window. All derivations are relegated to the appendix.

3.1 The persistent poverty headcount H

The simplest measure of persistent poverty is the headcount, Foster’s (2009) H statistic,

defined as the population proportion of households who experience poverty in at least C of

the T periods covered by our panel: H = Pr (∑Tt=1 Yt ≥ C). This measure has a long history

– for example Coe (1978) used a C = T = 9 headcount measure and Duncan et al (1984) used

C = 1,5,8,10 with T = 10 in their analyses of persistent poverty in the PSID panel. This type

of measure fell out of favour after the influential work of Bane and Ellwood (1986), which

focused instead on the initiation and duration of poverty spells. However, it remains widely

used, for example in the official analysis of low-income dynamics in Britain (Department for

Work and Pensions 2010). It is also frequently used in conjunction with the short panels that

are typical in developing countries, where the Bane-Ellwood approach is harder to implement

– see, for example, the review by Baluch and Hoddinott (2000) and recent work by Dercon

and Porter (2011) and Dercon et al (2012) for Ethiopia.

Define P and N to be the numbers of observed periods of poverty and of non-poverty

respectively for a generic household, and let P ∗,N∗ be the numbers of unobserved periods of

poverty and non-poverty, where P +N+P ∗+N∗ ≡ T .1 Write the joint probability distribution

of the observed P,N as f (P,N) and note that non-negativity and the inequalities P +P ∗ ≥ C
and P + P ∗ +N ≤ T imply 0 ≤ P ≤ T and 0 ≤ N ≤ T −max{C,P}. Thus the probability of

persistent poverty is:

H = Pr (P + P ∗ ≥ C) =
T

∑
P=0

T−max{C,P}

∑
N=0

Pr (P ∗ ≥ C − P ∣P,N) f (P,N) (1)

We show in the appendix that this probability must lie between the following sharp bounds:

LH = Pr (P ≥ C) (2)

UH = Pr (N ≤ T −C) (3)

1N∗ is redundant henceforth, since it can be deduced with certainty from P,N and P ∗, as T is a known
constant. Note that we abstract from difficulties caused by exits from the population through death, emi-
gration, etc.
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The width of these bounds is Pr(P < C,N ≤ T −C), which is the proportion of ndeterminate’

cases: those where observation is partial (P +N < T ) and persistence cannot be ruled out

(N ≤ T −C). In practice, non-response and attrition rates rates are sufficiently high to make

these bounds alarmingly wide.

3.2 The EU measure E

A variant of the headcount has been adopted for policy monitoring by the EU. See European

Commission 2009 for the full list of EU social exclusion indicators, Eurostat 2012 for official

estimates and Jenkins and van Kerm (2011, 2012) for a critique. The EU measure gives a

retrospective picture, taken from the viewpoint of the current period, defined as the most

recent observation at time T . A household is defined to be in persistent poverty2 if it is

currently poor and was poor in at least two of the preceding three periods: in other words,

it must be poor in at least three out of four successive periods, with one of those being the

current period T . We generalise this by allowing the observation window and persistence

threshold to be arbitrary. In formal terms, define DT as an indicator of whether we observe

the household in the current period T (DT = 1) or not (DT = 0). For the case to count as one

of persistent poverty, we require there to be C periods of poverty in total and one of those

to be period T , thus the measure is:

E = Pr (P + P ∗ ≥ C,YT = 1) (4)

We show in the appendix that the sharp bounds are:

LE = Pr (YT = 1,DT = 1, P ≥ C) (5)

UE = Pr (DT = 0,N ≤ T −C) + Pr (YT = 1,DT = 1, P < C,N ≤ T −C)

+ Pr (DT = 0, P ≥ C) + Pr (YT = 1,DT = 1, P ≥ C) (6)

3.3 The duration-adjusted headcount K0

A major drawback of the measuresH and E is that they fail to distinguish between households

that have different durations of poverty within the T -period observation window. Foster

2Or, in EU terminology at risk of persistent poverty
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(2009) proposed the K0 statistic, designed to improve on the crude headcount by incorpo-

rating the extent to which each persistently poor household exceeds the critical threshold.3 It

is defined as the headcount measure H multiplied by the mean number of periods of poverty

conditional on poverty persistence as a proportion of T :

K0 = H ×E (P + P ∗∣P + P ∗ ≥ C) /T

= 1

T

⎡⎢⎢⎢⎢⎣
∑

P,N∈S

T−P−N
∑

P ∗=max{0,C−P}
[P + P ∗] g (P ∗∣P,N) f (P,N)

⎤⎥⎥⎥⎥⎦
(7)

where g( . ∣P,N) is the conditional probability distribution of P ∗ and S is the set of integers

P,N which allow the possibility of persistent poverty and thus satisfy P,N ≥ 0, P + N ≤
T,N ≤ T −C. Partition S into three subsets S1, S2 and S3:

Fully-observed, persistently poor: S1 = {P,N ∶ P +N = T,P ≥ C}
Part-observed, persistently poor: S2 = {P,N ∶ P +N < T,P ≥ C}
Part-observed, poverty status ambiguous: S3 = {P,N ∶ N ≤ T −C,P < C}

In this case, the sharp bounds are:

LK0 = 1

T
∑

P,N∈(S1∪S2)
Pf (P,N) (8)

UK0 = 1

T

⎡⎢⎢⎢⎢⎣
∑

P,N∈S1

Pf (P,N) + ∑
P,N∈(S2∪S3)

(T −N)f (P,N)
⎤⎥⎥⎥⎥⎦

(9)

3.4 Evidence: worst-case bounds

We use simple Bayesian estimation, which has the advantage of coping easily with the more

complex structure of the improved bounds developed later in section 4, without the technical

difficulties of bias correction and construction of confidence sets (Tamer 2010). All bounds

can be estimated from sample information in the form of a vector f of sample frequencies

for (P,N), which has a multinomial distribution conditional on the vector of underlying

population probabilities, π, giving the likelihood:

l(f ∣π) ∝∏
j

π
fj
j (10)

3Bossert et al (2008) and Dutta et al (2011) propose differently-weighted versions of the headcount which
take account of the continuity of poverty; Dickerson and Popli (2012) apply a combination of these measures
to analyse the effect of poverty on child development. These modified measures could be bounded using an
extension of our approach.
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The natural conjugate prior for π is the Dirichlet distribution, which has the form g(π) ∝

∏j π
Aαj

j , where αj can be thought of as a prior estimate of πj and A represents the amount of

prior information, expressed in a form equivalent to sample size. The posterior distribution

is also Dirichlet:

h(π ∣ f) ∝∏
j

π
fj+Aαj

j (11)

The mean and variance of the posterior for πj are µj = (fj+aαj)/(n+A) and µj[1−µj]/(n+A)
respectively. We specify each αj as 1/J where J is the number of elements in π, and

set A = 50, so that the prior contributes less than one eighth of the information used in

estimation. This choice of αj was made primarily to avoid zero probabilities in the posterior

distribution corresponding to empty cells in the sample distribution, but the choice of αj

makes no discernible difference to the posterior distribution with A set at this level.4

Since the bounds are known functions of the true population probabilities π, we can draw

a large sample {L(r), U (r), s = 1...R} from their posterior distribution and make probabilistic

statements about their location. Table 1 presents posterior means and standard deviations

for the worst-case bounds, together with conventional sample persistent poverty rates cal-

culated from the subset of complete survey responses, using alternative weights designed to

correct for sample design and for non-response and sample design jointly.

The bounds are very wide and essentially useless for the sort of policy monitoring role

envisaged by the EU (Atkinson et al 2002), unless we are prepared to make additional

strong assumptions about the pattern of change over time. Consider the example of the ‘3

years in 4’ headcount, with posterior mean bounds [0.114,0.343]. Suppose poverty declines

dramatically, with the upper bound for a later 4-year period halved; this would give worst-

case bounds for the change in persistent poverty of [−0.229,0.0575], which tell us very little

about the direction and magnitude of change. The bounds are unhelpful from a statistical

viewpoint too: although the non-response weights used in the ENAHO panel have a big

positive effect on estimates of persistent poverty, the bounds tell us nothing about their

validity since, in every case, the estimate weighted only for sample design and the estimate

weighted for both design and non-response lie well within the identified interval.

4Rather than using raw frequencies for the fj , we construct them as fj = n∑n
i=1wiξij , where wi is the

survey design weight and ξij is a binary variable identifying cases in the jth cell of the (P,N) distribution.
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Table 1 Estimated worst-case bounds
(posterior means and standard deviations)

Balanced panel sample
Pr(P > C ∣P +N = T ) Bayesian posterior means and

Persistent weighted for: standard deviations
Persistence poverty design+ Lower Standard Upper Standard
threshold measure design response bound deviation bound deviation

4-wave panel (2007-10)
H 0.327 0.411 0.226 (0.009) 0.542 (0.011)

C = 2 E 0.195 0.284 0.123 (0.007) 0.347 (0.010)
K0 0.237 0.320 0.156 (0.007) 0.399 (0.009)
H 0.186 0.282 0.114 (0.007) 0.343 (0.010)

C = 3 E 0.146 0.237 0.084 (0.006) 0.263 (0.009)
K0 0.166 0.255 0.100 (0.006) 0.300 (0.009)

5-wave panel (2007-11)
H 0.359 0.430 0.255 (0.009) 0.608 (0.011)

C = 2 E 0.201 0.263 0.123 (0.007) 0.394 (0.011)
K0 0.237 0.313 0.156 (0.006) 0.412 (0.008)
H 0.241 0.329 0.146 (0.008) 0.437 (0.011)

C = 3 E 0.174 0.242 0.094 (0.006) 0.327 (0.010)
K0 0.190 0.273 0.112 (0.006) 0.343 (0.009)
H 0.146 0.233 0.083 (0.006) 0.276 (0.010)

C = 4 E 0.121 0.198 0.063 (0.005) 0.233 (0.009)
K0 0.133 0.215 0.074 (0.005) 0.247 (0.009)

4 Tighter bounds

These results give an overly pessimistic view of the prospects for clear inferences on poverty

persistence because the worst-case identified sets include extreme regions that we know are

highly implausible. A drawback of the partial identification approach is that, to make the

bounds useful, we need to be able to exclude the complete set of implausibly extreme regions

via simple constraints which rule them out without also excluding other more realistic regions.

These constraints are often not easy to specify. Here we consider three sources of additional

information that can be used to tighten the bounds.
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4.1 External information on the per-period poverty rate

Worst-case bounds are wide because they allow some unkown probabilities of the form

Pr(P ∗ ≥ C − P ∣P,N) to take any value from 0 to 1. But this unrestricted range con-

tains some highly implausible regions. If, for example, we have observed no non-poverty

and several periods of poverty for a particular household, then it is implausible to assume

that the probability of crossing the persistent poverty threshold is zero. Conversely, if we

observe a household with repeated non-poverty and no poverty, it is unreasonable to en-

tertain a value close to 1 for the unknown probability Pr(P ∗ ≥ C − P ∣P,N). We pursue

this idea using bounds developed by Zaigraev and Kaniovski (2010) under the assumption

that the outcomes in the unobserved periods are a set of exchangeable Bernoulli trials with

equal probabilities and unknown correlation.5 Over the period 2007-11, official cross-section

poverty rates in Peru fell fell from 0.383 to 0.258. To ensure that our prior information is

conservative, we use 0.25 as the lower limit on the probability of poverty in any missing

panel wave for a household with some observed poverty and no observed non-poverty, and

1-0.25 as the upper limit for a household with observed non-poverty and no observed poverty.

Limits for other cases are set appropriately. The particular form of we use for these limits is

specified in section A4 of the appendix.

Writing these context-specific a priori limits for the marginal probability of poverty in

any of the unobserved periods, conditional on P,N as [εmin
PN , ε

max
PN ], we show in the appendix

that the modified bounds for the headcount measure are:

L∗H = LH +
C−1
∑
P=0

T−C
∑
N=0

max{0,
[T − P −N]εmin

PN −C + P + 1

T −N −C + 1
} f (P,N) (12)

U∗
H = UH −

C−1
∑
P=0

T−C
∑
N=0

[1 −min{1,
[T − P −N]εmax

PN

C − P
} ] f (P,N) (13)

where LH and UH are the original bounds defined by (2) and (3).

5Exchangeability is a strong assumption, so we have also computed estimates (available on request) where
we confine the use of this additional information to cases with P = C − 1,N = 0 and N = T − C − 1, P = 0,
where only a single additional observation of poverty or non-poverty respectively is required to classify
the household unambiguously. In this special case, the Zaigraev-Kaniovski bounds are valid without the
exchangeability assumption and the results are very similar to those presented below.
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4.2 Instrumental variable restrictions

Assume we can observe a set of discrete characteristics Z ∈ Sz believed a priori to be unrelated

to persistent poverty in the sense that all of our measures H,E and K0 are identical in all the

subpopulations defined by points of support for Z. This means that the worst-case bounds

{L(z), U(z)} evaluated at any point of support z are valid for the overall persistent poverty

measure, allowing us to narrow the interval (2)-(3) by using the maximal lower bound and

minimal upper bound over Sz:6

max
z∈Sz

L (z) ≤ H ≤ min
z∈Sz

U (z) (14)

If the distribution of Z is sufficiently coarse, it is possible to estimate Pr(P ≥ C ∣Z) and

Pr(N ≤ T − C ∣Z) as sample proportions with the cells defined by Z, as we do in this

application. Otherwise, the bounds could be estimated by fitting empirical models using

estimation methods which are as flexible as possible. The obvious choice of instrumental

variables Z is derived from information relating to survey fieldwork, such as interviewer

characteristics (Nicoletti 2010, Nicoletti et al 2011). This requires assumptions that (i)

the process of observing the household does not change its behaviour and poverty outcome

and (ii) that poverty status has no influence on fieldwork procedures such as selection of

interviewers. In our application, we use an instrument that identifies four groups: interviewer

above/below median age × interviewer with/without supervisor job grade.

4.3 Monotone instrument restrictions

An alternative form of instrument, the monotone instrumental variable (MIV), was intro-

duced by Manski (1995) and Manski and Pepper (2000, 2009). Here, we use a single discrete

variable W ∈ Sw with the chosen measure of persistent poverty evaluated at points of sup-

port w is known a priori to be weakly increasing in w. For any set of conditional bounds

{L(w), U(w)}, the MIV bounds are:

E [max
w≤W

L (w)] ≤ H ≤ E [min
w≥W

U (w)] (15)

6In the IV and MIV cases, we can also condition on other covariates X which are not used as instruments.
The bounds (14) and (15) are then conditional on X; unconditional bounds are constructed by averaging
with respect to the distribution of X. Introducing other covariates would tighten the bounds to some degree
but, by increasing the dimensionality of the problem, they make it more difficult to avoid strong simplifying
assumptions.
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where the min and max are with respect to w and the expectations are with respect to the

distribution of W . The variable W must be observable even for households that the survey

never succeeds in interviewing, so this confines them in practice to characteristics of the

locality and exterior of the dwelling.

5 Estimates of improved bounds

We compute the worst-case bounds and improved bounds for each of 50,000 replications

drawn from the posterior distribution. The results are summarised in terms of the means

and standard deviations of the posterior bounds (reported separately for the three measures

in Tables 2-4) and in terms of the probability of coverage by the identification interval (in

Figure 3). We construct improved bounds using the external information, IV and MIV

approaches separately. We also construct a fourth set combining all three improvements, by

taking the maximal lower bound and minimal upper bound at each replication.7 We find a

considerable difference in the character of the results between the headcount measure and

the more elaborate EU and duration-adjusted measures. For the headcount, Table 2 shows

results for various combinations of panel length T and persistence threshold C.

7It would be possible to combine the IV and MIV approaches by working from bounds conditioned on
both Z and W , and combining the min and max operations in (14) and (15). We choose not to do this
because it would greatly increase the number of sample cells containing very few observations, and raise
concerns about robustness.
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Table 2 Estimates of improved bounds: the headcount H
(posterior means and standard deviations)

Balanced panel sample
Pr(P > C ∣P +N = T ) Bayesian posterior means and

weighted for: standard deviations
Persistence design+ Lower Standard Upper Standard
threshold Bounds design response bound deviation bound deviation

4-wave panel (2007-10)
Worst-case 0.226 (0.009) 0.542 (0.011)
External 0.236 (0.009) 0.542 (0.011)

C = 2 IV 0.327 0.411 0.353 (0.035) 0.513 (0.015)
MIV 0.265 (0.017) 0.503 (0.023)

Combined 0.353 (0.035) 0.496 (0.019)
Worst-case 0.114 (0.007) 0.343 (0.010)
External 0.122 (0.007) 0.343 (0.010)

C = 3 IV 0.186 0.282 0.199 (0.028) 0.311 (0.014)
MIV 0.142 (0.012) 0.325 (0.021)

Combined 0.199 (0.028) 0.306 (0.014)
5-wave panel (2007-11)

Worst-case 0.255 (0.009) 0.608 (0.011)
External 0.264 (0.009) 0.608 (0.011)

C = 2 IV 0.359 0.430 0.384 (0.033) 0.583 (0.015)
MIV 0.308 (0.017) 0.571 (0.024)

Combined 0.385 (0.033) 0.565 (0.020)
Worst-case 0.146 (0.008) 0.437 (0.011)
External 0.156 (0.008) 0.437 (0.011)

C = 3 IV 0.241 0.329 0.252 (0.029) 0.405 (0.015)
MIV 0.179 (0.013) 0.416 (0.021)

Combined 0.252 (0.029) 0.399 (0.015)
Worst-case 0.083 (0.006) 0.276 (0.010)
External 0.087 (0.006) 0.276 (0.010)

C = 4 IV 0.146 0.233 0.138 (0.022) 0.245 (0.013)
MIV 0.105 (0.009) 0.264 (0.014)

Combined 0.138 (0.021) 0.243 (0.012)

For the headcount, the IV approach based on interviewer characteristics is the most

effective in narrowing the bounds, both by raising the lower bound considerably and lowering

the upper bound to some extent. The MIV approach based on the number of local businesses

also contributes significantly in some cases by lowering the upper bound. The use of external

information contributes very little. For the headcount measure, the use of a weighted estimate
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calculated from the subset of households which are fully observed (the balanced panel) is quite

successful when weights are used to adjust for both sample design and non-response. that

weighted estimate always lies between the mean posterior lower and upper bound, whereas

weighting for sample design tends to give an estimate below the mean posterior lower bound.

Despite the use of all three types of additional information, the combined bounds remain

sufficiently wide to make it virtually impossible to do the kind of policy monitoring over

time that is envisaged by the EU (European Commission 2009).

The EU and duration-adjusted variants are more complex than the simple headcount,

and they behave in rather different ways when additional information is introduced. The

posterior mean bounds are presented in Tables 3 and 4 for the E and K0 measures. External

information on the marginal per-period poverty rate make a much bigger contribution here,

lowering the upper bound considerably. The IV assumption is again the most effective in

raising the lower bound. The conventional weighting adjustment for non-response does not

work well. For the E measure (Table 3), the balanced panel estimate using weights that adjust

for both sample design and non-response lies at or above the posterior mean combined upper

bound for every combination of T and C. In contrast, the use of weights to adjust only for

sample design gives balanced panel estimates lying within the mean indentified interval in

most cases.

For the duration adjusted headcount K0,the fully-weighted balanced panel estimate lies

above the mean upper bound in a majority of the five T,C combinations, while the use of

weights for sample design only generates an estimate below the mean lower bound in all but

one case. Thus, the evidence for these more complex measures is that conventional weighting

procedures cannot be relied upon, and that weights intended to remove non-response bias

display a tendency to over-adjust. Of course, there is no guarantee that these findings for a

particular panel would also apply in other measurement contexts.

17



Table 3 Estimates of improved bounds: the EU measure E
(posterior means and standard deviations)

Balanced panel sample
Pr(P > C ∣P +N = T ) Bayesian posterior means and

weighted for: standard deviations
Persistence design+ Lower Standard Upper Standard
threshold Bounds design response bound deviation bound deviation

4-wave panel (2007-10)
Worst-case 0.123 (0.007) 0.347 (0.010)
External 0.127 (0.007) 0.248 (0.008)

C = 2 IV 0.195 0.284 0.201 (0.026) 0.308 (0.014)
MIV 0.144 (0.011) 0.341 (0.016)

Combined 0.201 (0.026) 0.248 (0.008)
Worst-case 0.084 (0.006) 0.263 (0.010)
External 0.088 (0.006) 0.199 (0.008)

C = 3 IV 0.146 0.237 0.126 (0.019) 0.232 (0.013)
MIV 0.097 (0.009) 0.257 (0.013)

Combined 0.126 (0.019) 0.199 (0.008)
5-wave panel (2007-11)

Worst-case 0.123 (0.007) 0.394 (0.011)
External 0.125 (0.007) 0.263 (0.008)

C = 2 IV 0.201 0.263 0.196 (0.026) 0.365 (0.015)
MIV 0.147 (0.009) 0.381 (0.018)

Combined 0.197 (0.025) 0.263 (0.008)
Worst-case 0.094 (0.006) 0.327 (0.010)
External 0.098 (0.006) 0.222 (0.008)

C = 3 IV 0.174 0.242 0.148 (0.022) 0.294 (0.014)
MIV 0.107 (0.008) 0.320 (0.016)

Combined 0.149 (0.021) 0.222 (0.008)
Worst-case 0.063 (0.005) 0.233 (0.009)
External 0.064 (0.005) 0.170 (0.007)

C = 4 IV 0.121 0.198 0.100 (0.017) 0.199 (0.012)
MIV 0.074 (0.007) 0.228 (0.013)

Combined 0.100 (0.017) 0.170 (0.007)
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Table 4 Estimates of improved bounds: the duration-adjusted headcount K0

(posterior means and standard deviations)

Balanced panel sample
Pr(P > C ∣P +N = T ) Bayesian posterior means and

weighted for: standard deviations
Persistence design+ Lower Standard Upper Standard
threshold Bounds design response bound deviation bound deviation

4-wave panel (2007-10)
Worst-case 0.156 (0.007) 0.399 (0.009)
External 0.172 (0.007) 0.330 (0.010)

C = 2 IV 0.237 0.320 0.247 (0.025) 0.373 (0.012)
MIV 0.178 (0.010) 0.383 (0.017)

Combined 0.247 (0.025) 0.330 (0.010)
Worst-case 0.100 (0.006) 0.300 (0.009)
External 0.107 (0.006) 0.230 (0.009)

C = 3 IV 0.166 0.255 0.172 (0.024) 0.272 (0.013)
MIV 0.123 (0.011) 0.286 (0.016)

Combined 0.173 (0.024) 0.230 (0.009)
5-wave panel (2007-11)

Worst-case 0.156 (0.006) 0.412 (0.011)
External 0.177 (0.007) 0.348 (0.010)

C = 2 IV 0.237 0.313 0.245 (0.023) 0.385 (0.011)
MIV 0.181 (0.009) 0.397 (0.016)

Combined 0.245 (0.023) 0.347 (0.010)
Worst-case 0.112 (0.006) 0.343 (0.009)
External 0.124 (0.007) 0.249 (0.009)

C = 4 IV 0.190 0.273 0.193 (0.023) 0.314 (0.012)
MIV 0.135 (0.009) 0.332 (0.016)

Combined 0.193 (0.023) 0.249 (0.009)
Worst-case 0.074 (0.005) 0.247 (0.009)
External 0.079 (0.006) 0.178 (0.008)

C = 4 IV 0.133 0.215 0.126 (0.020) 0.218 (0.012)
MIV 0.094 (0.008) 0.236 (0.013)

Combined 0.126 (0.020) 0.178 (0.008)

5.1 ‘Credible’ estimates

In Bayesian statistics, a credible set (at the (1−α) level) is a set of values for some unknown

parameter which has (1 − α) posterior probability. Extending the idea slightly, we define a
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credible set for any particular measureM =H,E orK0 as the set {m ∶ Pr([LM , UM] ∋m) ≥ 1 − α},

where the m are points in the unit interval, LM and UM are bounds relevant to the measure

M and the probability is with respect to the posterior distribution of LM , UM . For example,

a 90% credibility set for H is the set of values for the headcount which lie within the bounds

at least 90% of the time when sampling from the posterior distribution. All the credibility

sets are closed intervals in our case, and they can be read off from diagrams like Figure 3,

which shows a plot of Pr(m ∈ [LM , UM]) for each of the three measures and for the five

types of bound, in the case of a 4-wave panel and a persistence threshold of C = 3.

The combined use of external information and IV and MIV restrictions achieves a big

reduction in the size of these credible regions. For example, in the case illustrated in Figure 3,

the width of the identified interval falls from 0.207 to 0.052 for the headcount H; from 0.343

to 0.037 for the EU meaure E ; and from 0.180 to 0.012 for the duration-adjusted headcount

K0. These are remarkable improvements but, with the possible exception of K0, they still

leave the region of inherent uncertainty large enough to cause difficulties for the use of these

measures for policy monitoring over time, given the size of changes likely to be experienced

in practice.
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Figure 3 Posterior probabilities of coverage by bounds: T = 4,C = 3
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6 Conclusions

There are three main conclusions. First, we have shown that the prevalence and pattern of

missing data that is typical of household panel surveys produces much inherent uncertainty.

If we impose no a priori restrictions and ‘ask the data data to speak for themselves’, the

resulting bounds are very wide and completely useless for most analytical and policy pur-

poses. This is true for all three of the persistent poverty measures we consider: the simple

headcount, the EU risk of persistent poverty measure, and the duration-adjusted headcount.

Second, using the Peruvian ENAHO panel, we have shown that combined use of three

types of plausible a priori information can be used to narrow the range of uncertainty consid-

erably. They are: weak context-specific limits on the magnitude of the marginal single-period

poverty risk; an IV-type assumption that the underlying poverty process is invariant to in-

terviewer characteristics; and a monotonicity restriction relating poverty risk to an index of

neighbourhood business enterprise. Of these types of additional information, the external

limits are most effective in tightening the upper bound, and the IV assumption is the most

effective in raising the lower bound.

Our third main finding is the unreliability of the common practice of using a balanced

panel for multi-period poverty analysis, with use of conventional survey weights to remove

non-response bias. In our application, neither the weights intended to compensate for sample

design, nor the weights intended to adjust for sample design and non-response are able to

produce estimates that fall within our improved bounds in most cases. This suggests that

data are “missing not at random” – a situation that conventional survey weights are not

designed to handle.

Although our final bounds are still rather too wide to allow reliable monitoring of poverty

persistence as envisaged by the EU, our experience with the partial identification approach

is sufficiently encouraging to suggest that there is scope for it to be used productively in a

multi-period setting.
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Appendix: derivations

A1 The headcount measure

Split expression (1) into two components, using the fact that Pr (P ∗ ≥ C − P ∣P,N) = 1 whenever
P ≥ C:

Pr (P + P ∗ ≥ C) =
C−1
∑
P=0

T−C
∑
N=0

Pr (P ∗ ≥ C − P ∣P,N) f (P,N) +
T

∑
P=C

T−P
∑
N=0

f (P,N)

The second component on the right-hand side can be identified from sample data, but the first
component involves terms Pr (P ∗ ≥ C − P ∣P,N) which are unknown since P ∗ is unobserved. In the
absence of further information about the distribution of P ∗∣P,N , lower and upper bounds (LH and
UH) on the probability of persistent poverty are found by setting each term Pr (P ∗ ≥ C − P ∣P,N)
to 0 and 1 respectively. Thus:

LH =
T

∑
P=C

T−P
∑
N=0

f (P,N) = Pr (P ≥ C)

UH =
C−1
∑
P=0

T−C
∑
N=0

f (P,N) +
T

∑
P=C

T−P
∑
N=0

f (P,N)

= Pr (P < C,N ≤ T −C) + Pr (P ≥ C)
= Pr (P < C,N ≤ T −C) + Pr (P ≥ C,N ≤ T −C)
= Pr (N ≤ T −C)

The penultimate step in the derivation of UH follows because P ≥ C ⇒ N ≤ T −C.

A2 The EU measure

The EU measure can be written:

E =
T

∑
P=0

T−max{C,P}
∑
N=0

1

∑
DT =0

Pr (YT = 1 ∣DT , P,N)Pr (P ∗ ≥ C − P ∣ P,N,YT = 1,DT )Pr (DT , P,N)

=
C−1
∑
P=0

T−C
∑
N=0

Pr (YT = 1 ∣DT = 0, P,N)Pr (P ∗ ≥ C − P ∣ P,N,YT = 1,DT = 0)Pr (DT = 0, P,N)

+
C−1
∑
P=0

T−C
∑
N=0

Pr (YT = 1 ∣DT = 1, P,N)Pr (P ∗ ≥ C − P ∣ P,N,YT = 1,DT = 1)Pr (DT = 1, P,N)

+
T−1
∑
P=C

T−P
∑
N=0

Pr (YT = 1 ∣DT = 0, P,N)Pr (DT = 0, P,N)

+
T

∑
P=C

T−P
∑
N=0

Pr (YT = 1 ∣DT = 1, P,N)Pr (DT = 1, P,N)

All terms are potentially observable except Pr (P ∗ ≥ C − P ∣ P,N,YT = 1,DT = 0) and
Pr (YT = 1 ∣DT = 0, P,N). Set these to 0 for the lower bound, and to 1 for the upper bound:

LE =
T

∑
P=C

T−P
∑
N=0

Pr (YT = 1,DT = 1, P,N)
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UE =
C−1
∑
P=0

T−C
∑
N=0

[Pr (DT = 0, P,N) + Pr (YT = 1,DT = 1, P,N)]

+
T−1
∑
P=C

T−P
∑
N=0

[Pr (DT = 0, P,N) + Pr (YT = 1,DT = 1, P,N)]

These define the bounds (5) and (6).

A3 The duration-adjusted headcount

Split expression (7) into sums over the sets S1...S3:

T ×K0 = ∑
P,N∈S1

Pf (P,N) + ∑
P,N∈S2

T−P−N
∑
P ∗=0

[P + P ∗] g (P ∗∣P,N) f (P,N)

+ ∑
P,N∈S3

T−P−N
∑

P ∗=C−P
[P + P ∗] g (P ∗∣P,N) f (P,N)

The only unknown terms are the conditional probabilities g (P ∗∣P,N), and these can take any values
consistent with the restrictions g (P ∗∣P,N) ≥ 0 and ∑T−P−NP ∗=0 g (P ∗∣P,N) = 1. For the lower bound,
choose the smallest possible value for the second and third terms by setting g (P ∗∣P,N) equal to
1 for P ∗ = 0 and 0 for each P ∗ > max{0,C − P}. For the upper bound, choose the largest possible
values for the second and third terms by setting g (P ∗ = T − P −N ∣P,N) = 1 and f (P ∗∣P,N) = 0
for P ∗ < T − P −N , giving:

T ×LK0 = ∑
P,N∈S1

Pf (P,N) + ∑
P,N∈S2

Pf (P,N)

T ×UK0 = ∑
P,N∈S1

Pf (P,N) + ∑
P,N∈S2∪S3

[T −N]f (P,N)

which are expressible as (8)-(9).

A4 External information

Zaigraev and Kaniovski (2010) (henceforth ZK) prove that, for a set of n exchangeable Bernoulli
trials with equal probabilities p and unknown correlation, the probability of at least k occurrences
satisfies the following bounds:

λ(n, k, p) ≤ Pr(at least k occurrences) ≤ υ(n, k, p)

where: λ(n, k, p) = max{0, (np − k + 1)/(n − k + 1)}; υ(n, k, p) = min{1, np/k}; p is the household’s
marginal per-period poverty rate, assumed uniform over time; n is the number of unobserved
periods; and k is the minimum number of periods of unobserved poverty required to reach the
persistence threshold. Our a priori limits on p are εmin

PN and εmax
PN as set out in Table A1:

Table A1 Context-specific a priori limits on the
period-specific marginal poverty rate

P N εmin
PN εmax

PN

[1...C − 1] 0 0.25 0.95
0 [1...T −C] 0.10 0.25
0 0 0.025 0.75
P > N > 0 0.20 0.75
N ≥ P > 0 0.10 0.50
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The headcount

To incorporate this further information, partition equation (1):

H =
C−1
∑
P=0

T−C
∑
N=0

Pr (P ∗ ≥ C − P ∣P,N) f (P,N) +
T

∑
P=C

T−P
∑
N=0

f (P,N)

For the lower bound, instead of setting all unknown terms Pr (P ∗ ≥ C − P ∣P,N = 0) to zero, set
them to the ZK lower bound, specifying n = T − P −N,k = C − P and p = εmin

PN , giving:

L∗H =
C−1
∑
P=0

T−C
∑
N=0

λ (T − P −N,C − P, εmin
PN) f (P,N) + Pr (P ≥ C)

For the upper bound, use the ZK upper limit on Pr (P ∗ ≥ C − P ∣P,N) rather than the extreme
value of 1, giving:

U∗
H =

C−1
∑
P=0

T−C
∑
N=0

υ (T − P −N,C − P, εmax
PN ) f (P,N) + Pr (P ≥ C)

These are improved bounds given in (12) and (13) above.

The EU measure

Write the EU measure as:

E =
C−1
∑
P=0

T−C
∑
N=0

Pr (YT = 1, P ∗ ≥ C − P ∣ P,N,DT = 0)Pr (P,N,DT = 0)

+
C−1
∑
P=0

T−C
∑
N=0

Pr (P ∗ ≥ C − P ∣ P,N,YT = 1,DT = 1)Pr (YT = 1,DT = 1, P,N)

+
T

∑
P=C

T−P
∑
N=0

Pr (YT = 1 ∣ P,N,DT = 0)Pr (P,N,DT = 0) + Pr (YT = 1,DT = 1, P ≥ C)

The first term involves the unobservable probability Pr (YT = 1, P ∗ ≥ C − P ∣ P,N,DT = 0). Since
P ∗ = T −N−P implies YT = 1, this can be bounded below by Pr(P ∗ = T −N−P ∣P,N,DT = 0); an ob-
vious upper bound is Pr(P ∗ ≥ C−P ∣P,N,DT = 0), and both of these bounds can in turn be bounded
using ZK. In the second term defining E , the probability Pr (P ∗ ≥ C − P ∣ P,N,YT = 1,DT = 1) can
be directly bounded using ZK. The third term involves Pr (YT = 1 ∣ P,N,DT = 0), which is zero if
N = T − P and otherwise is the probability of a positive outcome in an exogenously chosen period
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and is thus bounded by [εmin
PN , ε

max
PN ]. Putting these together, gives the following bounds:

L∗E =
C−1
∑
P=0

T−C
∑
N=0

λ (T −N − P,T −N − P, εmin
PN)Pr (P,N,DT = 0)

+
C−1
∑
P=0

T−C
∑
N=0

λ (T −N − P,C − P, εmin
PN)Pr (YT = 1,DT = 1, P,N)

+
T

∑
P=C

T−P
∑
N=0

εmin
PNPr (P,N,DT = 0) + Pr (YT = 1,DT = 1, P ≥ C)

U∗
E =

C−1
∑
P=0

T−C
∑
N=0

εmax
PN Pr (P,N,DT = 0)

+
C−1
∑
P=0

T−C
∑
N=0

υ (T −N − P,C − P, εmax
PN )Pr (YT = 1,DT = 1, P,N)

+
T

∑
P=C

T−P
∑
N=0

εmax
PN Pr (P,N,DT = 0) + Pr (YT = 1,DT = 1, P ≥ C)

where, in the first term of the upper bound, we have used the fact that υ(T −P −N,T −P −N, εmax
PN ) ≡

εmax
PN .

The duration-adjusted headcount

Write the measure as:

T ×K0 = ∑
P,N∈S1∪S2

Pf (P,N) + ∑
P,N∈S2

[
T−P−N
∑
P ∗=0

P ∗g (P ∗∣P,N) ] f (P,N)

+ ∑
P,N∈S3

P [
T−P−N
∑

P ∗=C−P
g (P ∗∣P,N) ] f (P,N) + ∑

P,N∈S3

[
T−P−N
∑

P ∗=C−P
P ∗g (P ∗∣P,N) ] f (P,N)

The unobserved elements are the three sums in square brackets. The first of these defines the
conditional mean, E(P ∗∣P,N), of the number of “successes” in a set of T − P −N “trials”, which
is bounded above and below by {(T − P −N)εmin

PN , (T − P −N)εmax
PN }. The second defines the prob-

ability Pr(P ∗ ≥ C − P ∣P,N). The third is a partial sum which satisfies the following inequalities:

(C − P )Pr(P ∗ ≥ C − P ∣P,N) ≤
T−P−N
∑

P ∗=C−P
P ∗g (P ∗∣P,N) ≤ (T − P −N)Pr(P ∗ ≥ C − P ∣P,N)

The ZK bounds {λ (T − P −N,C − P, εmin
PN) , υ (T − P −N,C − P, εmax

PN )} can be applied to Pr(P ∗ ≥
C − P ∣P,N), giving the following bounds for K0:

L∗K0
= 1

T

⎡⎢⎢⎢⎢⎣
∑

P,N∈S1∪S2

Pf (P,N) + ∑
P,N∈S2

εmin
PN P (T − P −N) f (P,N)

+ ∑
P,N∈S2

Pλ (T − P −N,C − P, εmin
PN) f(P,N) + ∑

P,N∈S3

(C − P )λ (T − P −N,C − P, εmin
PN) f(P,N)

⎤⎥⎥⎥⎥⎦

U∗
K0

= 1

T

⎡⎢⎢⎢⎢⎣
∑

P,N∈S1∪S2

Pf (P,N) + ∑
P,N∈S2

εmax
PN P (T − P −N) f (P,N)

+ ∑
P,N∈S2

Pυ (T − P −N,C − P, εmax
PN ) f(P,N) + ∑

P,N∈S3

(T − P −N)υ (T − P −N,C − P, εmax
PN ) f(P,N)

⎤⎥⎥⎥⎥⎦
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